23,142 research outputs found

    Integration of a Phosphatase Cascade with the MAP Kinase Pathway provides for a Novel Signal Processing Function

    Get PDF
    We mathematically modeled the receptor-activated MAP kinase signaling by incorporating the regulation through cellular phosphatases. Activation induced the alignment of a phosphatase cascade in parallel with the MAP kinase pathway. A novel regulatory motif was thus generated, providing for the combinatorial control of each MAPK intermediate. This ensured a non-linear mode of signal transmission with the output being shaped by the balance between the strength of input signal, and the activity gradient along the phosphatase axis. Shifts in this balance yielded modulations in topology of the motif, thereby expanding the repertoire of output responses. Thus we identify an added dimension to signal processing, wherein the output response to an external stimulus is additionally filtered through indicators that define the phenotypic status of the cell.Comment: Whole Manuscript 33 pages inclduing Main text, 7 Figures and Supporting Informatio

    Information theoretical study of cross-talk mediated signal transduction in MAPK pathways

    Full text link
    Biochemical networks related to similar functional pathways are often correlated due to cross-talk among the homologous proteins in the different networks. Using a stochastic framework, we address the functional significance of the cross-talk between two pathways. Our theoretical analysis on generic MAPK pathways reveals cross-talk is responsible for developing coordinated fluctuations between the pathways. The extent of correlation evaluated in terms of the information theoretic measure provides directionality to net information propagation. Stochastic time series and scattered plot suggest that the cross-talk generates synchronization within a cell as well as in a cellular population. Depending on the number of input and output, we identify signal integration and signal bifurcation motif that arise due to inter-pathway connectivity in the composite network. Analysis using partial information decomposition quantifies the net synergy in the information propagation through these branched pathways.Comment: Revised version, 17 pages, 5 figure

    Intracellular mechanisms underlying the nicotinic enhancement of LTP in the rat dentate gyrus

    Get PDF
    We have previously shown that activation of nicotinic acetylcholine receptors (nAChRs) enhanced long-term potentiation (LTP) in the rat dentate gyrus in vitro via activation of α7 nAChR. In the present studies, mechanisms underlying the acute and chronic nicotinic enhancement of LTP were examined. In particular, the involvement of activation of intracellular kinases was examined using selective kinase antagonists, and the effects of enhancing cholinergic function with positive allosteric modulators of the α7 nAChR and with acetylcholinesterase (AChE) inhibitors were also investigated. Activation of extracellular signal-regulated kinase (ERK) and cAMP-dependent protein kinase (PKA) was found to be involved in the induction of the acute nicotinic enhancement of LTP, although not control LTP. In contrast, activation of the tyrosine kinase Src, Ca2+-calmodulin-dependent protein kinase II, Janus kinase 2 and p38 mitogen-activated protein kinase was not involved in the acute nicotinic enhancement of LTP, although Src activation was necessary for control LTP. Moreover, activation of phosphoinositide 3-kinase was involved in the acute nicotinic enhancement of LTP to a much lesser extent than in control LTP. Chronic nicotine enhancement of LTP was found to be dependent on PKA, ERK and Src kinases. Acute nicotinic enhancement of LTP was occluded by chronic nicotine treatment. The positive allosteric modulator PNU-120596 was found to strongly reduce the threshold for nicotinic enhancement of LTP, an affect mediated via the α7 nAChR as it was blocked by the selective antagonist methyllycaconitine. The AChE inhibitors tacrine and physostigmine enhanced control LTP

    The macroscopic effects of microscopic heterogeneity

    Full text link
    Over the past decade, advances in super-resolution microscopy and particle-based modeling have driven an intense interest in investigating spatial heterogeneity at the level of single molecules in cells. Remarkably, it is becoming clear that spatiotemporal correlations between just a few molecules can have profound effects on the signaling behavior of the entire cell. While such correlations are often explicitly imposed by molecular structures such as rafts, clusters, or scaffolds, they also arise intrinsically, due strictly to the small numbers of molecules involved, the finite speed of diffusion, and the effects of macromolecular crowding. In this chapter we review examples of both explicitly imposed and intrinsic correlations, focusing on the mechanisms by which microscopic heterogeneity is amplified to macroscopic effect.Comment: 20 pages, 5 figures. To appear in Advances in Chemical Physic

    Customizing the therapeutic response of signaling networks to promote antitumor responses by drug combinations

    Get PDF
    Drug resistance, de novo and acquired, pervades cellular signaling networks (SNs) from one signaling motif to another as a result of cancer progression and/or drug intervention. This resistance is one of the key determinants of efficacy in targeted anti-cancer drug therapy. Although poorly understood, drug resistance is already being addressed in combination therapy by selecting drug targets where SN sensitivity increases due to combination components or as a result of de novo or acquired mutations. Additionally, successive drug combinations have shown low resistance potential. To promote a rational, systematic development of combination therapies, it is necessary to establish the underlying mechanisms that drive the advantages of combination therapies, and design methods to determine drug targets for combination regimens. Based on a joint systems analysis of cellular SN response and its sensitivity to drug action and oncogenic mutations, we describe an in silico method to analyze the targets of drug combinations. Our method explores mechanisms of sensitizing the SN through a combination of two drugs targeting vertical signaling pathways. We propose a paradigm of SN response customization by one drug to both maximize the effect of another drug in combination and promote a robust therapeutic response against oncogenic mutations. The method was applied to customize the response of the ErbB/PI3K/PTEN/AKT pathway by combination of drugs targeting HER2 receptors and proteins in the down-stream pathway. The results of a computational experiment showed that the modification of the SN response from hyperbolic to smooth sigmoid response by manipulation of two drugs in combination leads to greater robustness in therapeutic response against oncogenic mutations determining cancer heterogeneity. The application of this method in drug combination co-development suggests a combined evaluation of inhibition effects together with the capability of drug combinations to suppress resistance mechanisms before they become clinically manifest

    Aldosterone signaling through transient receptor potential melastatin 7 cation channel (TRPM7) and its α-kinase domain

    Get PDF
    We demonstrated a role for the Mg2 + transporter TRPM7, a bifunctional protein with channel and α-kinase domains, in aldosterone signaling. Molecular mechanisms underlying this are elusive. Here we investigated the function of TRPM7 and its α-kinase domain on Mg2 + and pro-inflammatory signaling by aldosterone. Kidney cells (HEK-293) expressing wild-type human TRPM7 (WThTRPM7) or constructs in which the α-kinase domain was deleted (ΔKinase) or rendered inactive with a point mutation in the ATP binding site of the α-kinase domain (K1648R) were studied. Aldosterone rapidly increased [Mg2 +]i and stimulated NADPH oxidase-derived generation of reactive oxygen species (ROS) in WT hTRPM7 and TRPM7 kinase dead mutant cells. Translocation of annexin-1 and calpain-II and spectrin cleavage (calpain target) were increased by aldosterone in WT hTRPM7 cells but not in α-kinase-deficient cells. Aldosterone stimulated phosphorylation of MAP kinases and increased expression of pro-inflammatory mediators ICAM-1, Cox-2 and PAI-1 in Δkinase and K1648R cells, effects that were inhibited by eplerenone (mineralocorticoid receptor (MR) blocker). 2-APB, a TRPM7 channel inhibitor, abrogated aldosterone-induced Mg2 + responses in WT hTRPM7 and mutant cells. In 2-APB-treated ΔKinase and K1648R cells, aldosterone-stimulated inflammatory responses were unchanged. These data indicate that aldosterone stimulates Mg2 + influx and ROS production in a TRPM7-sensitive, kinase-insensitive manner, whereas activation of annexin-1 requires the TRPM7 kinase domain. Moreover TRPM7 α-kinase modulates inflammatory signaling by aldosterone in a TRPM7 channel/Mg2 +-independent manner. Our findings identify novel mechanisms for non-genomic actions of aldosterone involving differential signaling through MR-activated TRPM7 channel and α-kinase

    Aldosterone signaling through transient receptor potential melastatin 7 cation channel (TRPM7) and its α-kinase domain

    Get PDF
    We demonstrated a role for the Mg2 + transporter TRPM7, a bifunctional protein with channel and α-kinase domains, in aldosterone signaling. Molecular mechanisms underlying this are elusive. Here we investigated the function of TRPM7 and its α-kinase domain on Mg2 + and pro-inflammatory signaling by aldosterone. Kidney cells (HEK-293) expressing wild-type human TRPM7 (WThTRPM7) or constructs in which the α-kinase domain was deleted (ΔKinase) or rendered inactive with a point mutation in the ATP binding site of the α-kinase domain (K1648R) were studied. Aldosterone rapidly increased [Mg2 +]i and stimulated NADPH oxidase-derived generation of reactive oxygen species (ROS) in WT hTRPM7 and TRPM7 kinase dead mutant cells. Translocation of annexin-1 and calpain-II and spectrin cleavage (calpain target) were increased by aldosterone in WT hTRPM7 cells but not in α-kinase-deficient cells. Aldosterone stimulated phosphorylation of MAP kinases and increased expression of pro-inflammatory mediators ICAM-1, Cox-2 and PAI-1 in Δkinase and K1648R cells, effects that were inhibited by eplerenone (mineralocorticoid receptor (MR) blocker). 2-APB, a TRPM7 channel inhibitor, abrogated aldosterone-induced Mg2 + responses in WT hTRPM7 and mutant cells. In 2-APB-treated ΔKinase and K1648R cells, aldosterone-stimulated inflammatory responses were unchanged. These data indicate that aldosterone stimulates Mg2 + influx and ROS production in a TRPM7-sensitive, kinase-insensitive manner, whereas activation of annexin-1 requires the TRPM7 kinase domain. Moreover TRPM7 α-kinase modulates inflammatory signaling by aldosterone in a TRPM7 channel/Mg2 +-independent manner. Our findings identify novel mechanisms for non-genomic actions of aldosterone involving differential signaling through MR-activated TRPM7 channel and α-kinase
    corecore