19,272 research outputs found

    Vascular smooth muscle contraction in hypertension

    Get PDF
    Hypertension is a major risk factor for many common chronic diseases, such as heart failure, myocardial infarction, stroke, vascular dementia and chronic kidney disease. Pathophysiological mechanisms contributing to the development of hypertension include increased vascular resistance, determined in large part by reduced vascular diameter due to increased vascular contraction and arterial remodelling. These processes are regulated by complex interacting systems such as the renin angiotensin aldosterone system (RAAS), sympathetic nervous system, immune activation and oxidative stress, which influence vascular smooth muscle function. Vascular smooth muscle cells are highly plastic and in pathological conditions undergo phenotypic changes from a contractile to a proliferative state. Vascular smooth muscle contraction is triggered by an increase in intracellular free calcium concentration ([Ca2+]i), promoting actin-myosin cross-bridge formation. Growing evidence indicates that contraction is also regulated by calcium-independent mechanisms involving RhoA-Rho kinase (ROCK), protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) signaling, reactive oxygen species and reorganization of the actin cytoskeleton. Activation of immune/inflammatory pathways and noncoding RNAs are also emerging as important regulators of vascular function. Vascular smooth muscle cell [Ca2+]i, not only determines the contractile state but also influences activity of many calcium-dependent transcription factors and proteins thereby impacting the cellular phenotype and function. Perturbations in vascular smooth muscle cell signaling and altered function influence vascular reactivity and tone, important determinants of vascular resistance and blood pressure. Here we discuss mechanisms regulating vascular reactivity and contraction in physiological and pathophysiological conditions and highlight some new advances in the field, focusing specifically on hypertension

    Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors

    Get PDF
    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms

    Functional Classification of Skeletal Muscle Networks. I. Normal Physiology

    Get PDF
    Extensive measurements of the parts list of human skeletal muscle through transcriptomics and other phenotypic assays offer the opportunity to reconstruct detailed functional models. Through integration of vast amounts of data present in databases and extant knowledge of muscle function combined with robust analyses that include a clustering approach, we present both a protein parts list and network models for skeletal muscle function. The model comprises the four key functional family networks that coexist within a functional space; namely, excitation-activation family (forward pathways that transmit a motoneuronal command signal into the spatial volume of the cell and then use Ca2+ fluxes to bind Ca2+ to troponin C sites on F-actin filaments, plus transmembrane pumps that maintain transmission capacity); mechanical transmission family (a sophisticated three-dimensional mechanical apparatus that bidirectionally couples the millions of actin-myosin nanomotors with external axial tensile forces at insertion sites); metabolic and bioenergetics family (pathways that supply energy for the skeletal muscle function under widely varying demands and provide for other cellular processes); and signaling-production family (which represents various sensing, signal transduction, and nuclear infrastructure that controls the turn over and structural integrity and regulates the maintenance, regeneration, and remodeling of the muscle). Within each family, we identify subfamilies that function as a unit through analysis of large-scale transcription profiles of muscle and other tissues. This comprehensive network model provides a framework for exploring functional mechanisms of the skeletal muscle in normal and pathophysiology, as well as for quantitative modeling

    Single muscle fiber proteomics reveals unexpected mitochondrial specialization

    Get PDF
    Mammalian skeletal muscles are composed of multinucleated cells termed slow or fast fibers according to their contractile and metabolic properties. Here, we developed a high-sensitivity workflow to characterize the proteome of single fibers. Analysis of segments of the same fiber by traditional and unbiased proteomics methods yielded the same subtype assignment. We discovered novel subtype-specific features, most prominently mitochondrial specialization of fiber types in substrate utilization. The fiber type-resolved proteomes can be applied to a variety of physiological and pathological conditions and illustrate the utility of single cell type analysis for dissecting proteomic heterogeneity

    Cmah-dystrophin deficient mdx mice display an accelerated cardiac phenotype that is improved following peptide-PMO exon skipping treatment

    Get PDF
    Duchenne muscular dystrophy (DMD) is caused by loss of dystrophin protein, leading to progressive muscle weakness and premature death due to respiratory and/or cardiac complications. Cardiac involvement is characterized by progressive dilated cardiomyopathy, decreased fractional shortening and metabolic dysfunction involving reduced metabolism of fatty acids—the major cardiac metabolic substrate. Several mouse models have been developed to study molecular and pathological consequences of dystrophin deficiency, but do not recapitulate all aspects of human disease pathology and exhibit a mild cardiac phenotype. Here we demonstrate that Cmah (cytidine monophosphate-sialic acid hydroxylase)-deficient mdx mice (Cmah−/−;mdx) have an accelerated cardiac phenotype compared to the established mdx model. Cmah−/−;mdx mice display earlier functional deterioration, specifically a reduction in right ventricle (RV) ejection fraction and stroke volume (SV) at 12 weeks of age and decreased left ventricle diastolic volume with subsequent reduced SV compared to mdx mice by 24 weeks. They further show earlier elevation of cardiac damage markers for fibrosis (Ctgf), oxidative damage (Nox4) and haemodynamic load (Nppa). Cardiac metabolic substrate requirement was assessed using hyperpolarized magnetic resonance spectroscopy indicating increased in vivo glycolytic flux in Cmah−/−;mdx mice. Early upregulation of mitochondrial genes (Ucp3 and Cpt1) and downregulation of key glycolytic genes (Pdk1, Pdk4, Ppara), also denote disturbed cardiac metabolism and shift towards glucose utilization in Cmah−/−;mdx mice. Moreover, we show long-term treatment with peptide-conjugated exon skipping antisense oligonucleotides (20-week regimen), resulted in 20% cardiac dystrophin protein restoration and significantly improved RV cardiac function. Therefore, Cmah−/−;mdx mice represent an appropriate model for evaluating cardiac benefit of novel DMD therapeutics

    A review of the molecular mechanisms underlying the development and progression of cardiac remodeling

    Get PDF
    Pathological molecular mechanisms involved in myocardial remodeling contribute to alter the existing structure of the heart, leading to cardiac dysfunction. Among the complex signaling network that characterizes myocardial remodeling, the distinct processes are myocyte loss, cardiac hypertrophy, alteration of extracellular matrix homeostasis, fibrosis, defective autophagy, metabolic abnormalities, and mitochondrial dysfunction. Several pathophysiological stimuli, such as pressure and volume overload, trigger the remodeling cascade, a process that initially confers protection to the heart as a compensatory mechanism. Yet chronic inflammation after myocardial infarction also leads to cardiac remodeling that, when prolonged, leads to heart failure progression. Here we review the molecular pathways involved in cardiac remodeling, with particular emphasis on those associated with myocardial infarction. A better understanding of cell signaling involved in cardiac remodeling may support the development of new therapeutic strategies towards the treatment of heart failure and reduction of cardiac complications. We will also discuss data derived from gene therapy approaches for modulating key mediators of cardiac remodeling

    OPA1 mutation and late-onset cardiomyopathy: mitochondrial dysfunction and mtDNA instability.

    Get PDF
    BackgroundMitochondrial fusion protein mutations are a cause of inherited neuropathies such as Charcot-Marie-Tooth disease and dominant optic atrophy. Previously we reported that the fusion protein optic atrophy 1 (OPA1) is decreased in heart failure.Methods and resultsWe investigated cardiac function, mitochondrial function, and mtDNA stability in a mouse model of the disease with OPA1 mutation. The homozygous mutation is embryonic lethal. Heterozygous OPA(+/-) mice exhibit reduced mtDNA copy number and decreased expression of nuclear antioxidant genes at 3 to 4 months. Although initial cardiac function was normal, at 12 months the OPA1(+/-) mouse hearts had decreased fractional shortening, cardiac output, and myocyte contraction. This coincided with the onset of blindness. In addition to small fragmented mitochondria, aged OPA1(+/-) mice had impaired cardiac mitochondrial function compared with wild-type littermates.ConclusionsOPA1 mutation leads to deficiency in antioxidant transcripts, increased reactive oxygen species, mitochondrial dysfunction, and late-onset cardiomyopathy

    Investigating the protective role of the natural hormone Melatonin, in reducing drug-induced cardiotoxicity in the therapy of chronic diseases

    Get PDF
    Heart failure (HF) is a highly complex disorder and a major end-point of cardiovascular diseases (CVD). The pathogenesis of HF is mostly unresolved but involves interplay between cardiac structural and electrical remodelling, metabolic alterations, cell death and altered gene expression. Mitochondrial dysfunction and HF are common complications of chronic treatment from diverse groups of drugs, in particular anticancer drugs such as doxorubicin (DOX). Treatment of animals and cardiomyocytes with cardiotoxic chemicals such as β-adrenergic receptor agonists (such as isoproterenol) induces cardiac dysfunction and HF. Previous work done by the group have identified the pineal hormone melatonin was protective against stress-induced cardiac arrhythmias and simulated heart failure in cardiomyocytes in vitro. Melatonin synthesis is also dramatically decreased with age and in patients with CVD. The aim of the present project was to better understand the pathogenesis of druginduced cardiac dysfunction and delineate the role of melatonin in cardioprotection in H9c2, a model rat cell line in vitro. Using the Seahorse XF analyser method, it was demonstrated that commonly used medication for chronic diseases such as amiodarone, amitriptyline, and statins all caused altered mitochondrial dysfunction. In addition, cardiotoxic chemicals (isoproterenol, hydrogen peroxide, DOX) altered oxidative phosphorylation and glycolysis in living cardiomyocyte-derived H9c2 cells; these deleterious metabolic changes were ameliorated by melatonin. Flowcytometry and Alamar Blue staining methods demonstrated that DOX robustly induced apoptosis in H9c2 cells (~30%) which was reversed by melatonin. Doxorubicin-induced stress in H9c2 cells dramatically altered gene expression in several key signalling pathways integral in cardiac function and disease. These included mitochondrial metabolism (UCP2, PPARɣ, Drp1, Mfn1, Parp 1, Parp2, Sirt3 and Cav3), apoptosis (Bcl2 and Bcl-xL), cardiac electrophysiology and arrhythmia (Scn5a, SERCA2a), calcium handling (SERCA2a) and cardiac remodelling (Myh7, ms1). Melatonin pre-treatment attenuated or completely blocked this DOX-induced alteration in gene expression in cardiomyocytes. In conclusion, the present result demonstrated for the first time that melatonin is cardioprotective against drug-induced cardiotoxicity and apoptosis via modifying diverse heart failure-related signalling pathways. This provides novel insight on the possible use of melatonin as an adjunct intervention in several therapies including anti-cancer
    corecore