124,020 research outputs found

    Oscillating Shells and Oscillating Balls in AdS

    Full text link
    It has recently been reported that certain thin timelike shells undergo oscillatory motion in AdS. In this paper, we compute two-point function of a probe field in the geodesic approximation in such an oscillating shell background. We confirm that the two-point function exhibits an oscillatory behaviour following the motion of the shell. We show that similar oscillatory dynamics is possible when the perfect fluid on the shell has a polytropic equation of state. Moreover, we show that certain ball like configurations in AdS also exhibit oscillatory motion and comment on how such a solution can be smoothly matched to an appropriate exterior solution. We also demonstrate that the weak energy condition is satisfied for these oscillatory configurations.Comment: 23 pages, 5 figures; v2: refs added; v3: JHEP versio

    Rhythmic Motion of a Droplet under a DC Electric Field

    Get PDF
    The effect of a stationary electric field on a water droplet with a diameter of several tens micrometers in oil was examined. Such a droplet exhibits repetitive translational motion between the electrodes in a spontaneous manner. The state diagram of this oscillatory motion was deduced; at 0-20 V the droplet is fixed at the surface of the electrode, at 20-70 V the droplet exhibits small-amplitude oscillatory motion between the electrodes, and at 70-100 V the droplet shows large-amplitude periodic motion between the electrodes. The observed rhythmic motion is explained in a semi-quantitative manner by using differential equations, which includes the effect of charging the droplet under an electric field. We also found that twin droplets exhibit synchronized rhythmic motion between the electrodes

    Friction and the oscillatory motion of granular flows

    Full text link
    This contribution reports on numerical simulations of 2D granular flows on erodible beds. The broad aim is to investigate whether simple flows of model granular matter exhibits spontaneous oscillatory motion in generic flow conditions, and in this case, whether the frictional properties of the contacts between grains may affect the existence or the characteristics of this oscillatory motion. The analysis of different series of simulations show that the flow develops an oscillatory motion with a well-defined frequency which increases like the inverse of the velocity's square root. We show that the oscillation is essentially a surface phenomena. The amplitude of the oscillation is higher for lower volume fractions, and can thus be related to the flow velocity and grains friction properties. The study of the influence of the periodic geometry of the simulation cell shows no significant effect. These results are discussed in relation to sonic sands.Comment: 7 pages, 8 figure

    Magnetic domain-wall velocity enhancement induced by a transverse magnetic field

    Full text link
    Spin dynamics of field-driven domain walls (DWs) guided by Permalloy nanowires are studied by high-speed magneto-optic polarimetry and numerical simulations. DW velocities and spin configurations are determined as functions of longitudinal drive field, transverse bias field, and nanowire width. Nanowires having cross-sectional dimensions large enough to support vortex wall structures exhibit regions of drive-field strength (at zero bias field) that have enhanced DW velocity resulting from coupled vortex structures that suppress oscillatory motion. Factor of ten enhancements of the DW velocity are observed above the critical longitudinal drive-field (that marks the onset of oscillatory DW motion) when a transverse bias field is applied. Nanowires having smaller cross-sectional dimensions that support transverse wall structures also exhibit a region of higher mobility above the critical field, and similar transverse-field induced velocity enhancement but with a smaller enhancement factor. The bias-field enhancement of DW velocity is explained by numerical simulations of the spin distribution and dynamics within the propagating DW that reveal dynamic stabilization of coupled vortex structures and suppression of oscillatory motion in the nanowire conduit resulting in uniform DW motion at high speed.Comment: 8 pages, 5 figure

    Negative differential magneto-resistance in ferromagnetic wires with domain walls

    Full text link
    A domain wall in a ferromagnetic one-dimensional nanowire experiences current induced motion due to its coupling with the conduction electrons. When the current is not sufficient to drive the domain wall through the wire, or it is confined to a perpendicular layer, it nonetheless experiences oscillatory motion. In turn, this oscillatory motion of the domain wall can couple resonantly with the electrons in the system affecting the transport properties further. We investigate the effect of the coupling between these domain wall modes and the current electrons on the transport properties of the system and show that such a system demonstrates negative differential magnetoresistance due to the resonant coupling with the low-lying modes of the domain wall motion.Comment: 5 pages, 3 figure

    Hydrodynamic Irreversibility in Particle Suspensions with Non-Uniform Strain

    Get PDF
    A dynamical phase transition from reversible to irreversible behavior occurs when particle suspensions are subjected to uniform oscillatory shear, even in the Stokes flow limit. We consider a more general situation with non-uniform strain (e.g. oscillatory channel flow), which is observed to exhibit markedly different dynamics. Self-organization and shear-induced migration only partially explain the delayed, simultaneous onset of irreversibility across the channel. The onset of irreversibility is accompanied by long-range correlated particle motion. This motion leads to particle activity even at the channel center, where the strain is negligible, and prevents the system from evolving into a reversible state

    Quasi-steady vortical structures in vertically vibrating soap �lms

    Get PDF
    An analysis of the quasi-steady streaming of the liquid in a vertically vibrated horizontal soap film is reported. The air around the soap film is seen to play a variety of roles: it transmits normal and tangential oscillatory stresses to the film, damps out Marangoni waves, and forces non-oscillatory deflection of the film and tangential motion of the liquid. Non-oscillatory volume forcing originating inside the liquid is also analysed. This forcing dominates the quasi-steady streaming when the excitation frequency is close to the eigenfrequency of a Marangoni mode of the soap film, while both volume forcing in the liquid and surface forcing of the gas on the liquid are important when no Marangoni mode resonates. Different manners by which the combined forcings can induce quasi-steady streaming motion are discussed and some numerical simulations of the quasi-steady liquid flow are presented

    Horizontal-axis tidal turbine blade loading for multi-frequency oscillatory motion

    Get PDF
    This paper presents results from an experimental study which analysed the hydrodynamic response of the out-of-plane blade root bending moment for a horizontal-axis turbine exposed to multi-frequency oscillatory motion. Estimates of the amplitude and phase agree well with those for single frequency oscillatory motion, which suggests that a model based on the principles of linear superposition is applicable. When minor flow separation is experienced, linear superposition is likely to offer conservative estimates. The findings are likely to be of interest to designers of turbines deployed in tidal streams, rivers or canals, and who are seeking low computational approaches for assessing the dynamic blade loads
    corecore