2,275 research outputs found
Transition from confined to bulk dynamics in symmetric star-linear polymer mixtures
We report on the linear viscoelastic properties of mixtures comprising
multiarm star (as model soft colloids) and long linear chain homopolymers in a
good solvent. In contrast to earlier works, we investigated symmetric mixtures
(with a size ratio of 1) and showed that the polymeric and colloidal responses
can be decoupled. The adopted experimental protocol involved probing the linear
chain dynamics in different star environments. To this end, we studied mixtures
with different star mass fraction, which was kept constant while linear chains
were added and their entanglement plateau modulus () and terminal
relaxation time () were measured as functions of their concentration.
Two distinct scaling regimes were observed for both and : at low
linear polymer concentrations, a weak concentration dependence was observed,
that became even weaker as the fraction of stars in the mixtures increased into
the star glassy regime. On the other hand, at higher linear polymer
concentrations, the classical entangled polymer scaling was recovered. Simple
scaling arguments show that the threshold crossover concentration between the
two regimes corresponds to the maximum osmotic star compression and signals the
transition from confined to bulk dynamics. These results provide the needed
ingredients to complete the state diagram of soft colloid-polymer mixtures and
investigate their dynamics at large polymer-colloid size ratios. They also
offer an alternative way to explore aspects of the colloidal glass transition
and the polymer dynamics in confinement. Finally, they provide a new avenue to
tailor the rheology of soft composites.Comment: 9 Figure
Field-control, phase-transitions, and life's emergence
Instances of critical-like characteristics in living systems at each
organizational level as well as the spontaneous emergence of computation
(Langton), indicate the relevance of self-organized criticality (SOC). But
extrapolating complex bio-systems to life's origins, brings up a paradox: how
could simple organics--lacking the 'soft matter' response properties of today's
bio-molecules--have dissipated energy from primordial reactions in a controlled
manner for their 'ordering'? Nevertheless, a causal link of life's macroscopic
irreversible dynamics to the microscopic reversible laws of statistical
mechanics is indicated via the 'functional-takeover' of a soft magnetic
scaffold by organics (c.f. Cairns-Smith's 'crystal-scaffold'). A
field-controlled structure offers a mechanism for bootstrapping--bottom-up
assembly with top-down control: its super-paramagnetic components obey
reversible dynamics, but its dissipation of H-field energy for aggregation
breaks time-reversal symmetry. The responsive adjustments of the controlled
(host) mineral system to environmental changes would bring about mutual
coupling between random organic sets supported by it; here the generation of
long-range correlations within organic (guest) networks could include SOC-like
mechanisms. And, such cooperative adjustments enable the selection of the
functional configuration by altering the inorganic network's capacity to assist
a spontaneous process. A non-equilibrium dynamics could now drive the
kinetically-oriented system towards a series of phase-transitions with
appropriate organic replacements 'taking-over' its functions.Comment: 54 pages, pdf fil
Emergent vortices in populations of colloidal rollers
Coherent vortical motion has been reported in a wide variety of populations
including living organisms (bacteria, fishes, human crowds) and synthetic
active matter (shaken grains, mixtures of biopolymers), yet a unified
description of the formation and structure of this pattern remains lacking.
Here we report the self-organization of motile colloids into a macroscopic
steadily rotating vortex. Combining physical experiments and numerical
simulations, we elucidate this collective behavior. We demonstrate that the
emergent-vortex structure lives on the verge of a phase separation, and single
out the very constituents responsible for this state of polar active matter.
Building on this observation, we establish a continuum theory and lay out a
strong foundation for the description of vortical collective motion in a broad
class of motile populations constrained by geometrical boundaries
Confined colloidal crystals in and out of equilibrium
Recent studies on confined crystals of charged colloidal particles are
reviewed, both in equilibrium and out of equilibrium. We focus in particular on
direct comparisons of experiments (light scattering and microscopy) with
lattice sum calculations and computer simulations. In equilibrium we address
buckling and crystalline multilayering of charged systems in hard and soft slit
confinement. We discuss also recent crystalline structures obtained for charged
mixtures. Moreover, we put forward possibilities to apply external
perturbations, in order to drive the system out of equilibrium. These include
electrolyte gradients as well as the application of shear and electric fields.Comment: Review article, 18 pages, 5 figure
Quantitative imaging of concentrated suspensions under flow
We review recent advances in imaging the flow of concentrated suspensions,
focussing on the use of confocal microscopy to obtain time-resolved information
on the single-particle level in these systems. After motivating the need for
quantitative (confocal) imaging in suspension rheology, we briefly describe the
particles, sample environments, microscopy tools and analysis algorithms needed
to perform this kind of experiments. The second part of the review focusses on
microscopic aspects of the flow of concentrated model hard-sphere-like
suspensions, and the relation to non-linear rheological phenomena such as
yielding, shear localization, wall slip and shear-induced ordering. Both
Brownian and non-Brownian systems will be described. We show how quantitative
imaging can improve our understanding of the connection between microscopic
dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of
methodology. Submitted for special volume 'High Solid Dispersions' ed. M.
Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009);
22 pages, 16 fig
Controlling the Interactions between Soft Colloids via Surface Adsorption
By employing monomer-resolved computer simulations and analytical
considerations based on polymer scaling theory, we analyze the conformations
and interactions of multiarm star polymers strongly adsorbed on a smooth,
two-dimensional plane. We find a stronger stretching of the arms as well as a
stronger repulsive, effective interaction than in the three dimensional case.
In particular, the star size scales with the number of arms as and the effective interaction as , as opposed to and , respectively, in three dimensions. Our results
demonstrate the dramatic effect that geometric confinement can have on the
effective interactions and the subsequent correlations of soft colloids in
general, for which the conformation can be altered as a result of geometrical
constraints imposed on them.Comment: 17 pages, LaTeX, 5 figures, to appear in Macromolecule
- …