2 research outputs found

    Derivative Proportional – Integral Controller Using Nelder-Mead Optimization for Glycerine Purification Heating Process

    Get PDF
    It is important to purify the crude glycerine before to convert them into value-added products. Such dark colored crude have high free fatty acid content that can be removed via heating process. This paper focuses mainly on the heating control system, which has contributed to the improvement of the glycerine purification process system. The design of Derivative Proportional – Integral controller for the glycerine temperature control loop system could demonstrate some improvement of the glycerine heating process control response in term of process settling time and percent overshoot. Derivative Proportional – Integral is a proposed controller where Proportional and Derivative control actions operate on process variables rather than error signals. Meanwhile, the integral mode is connected to the forward path where the error signal is used as an input to the control mode. The output of the two control modes is then subtracted to drive the process. The Derivative Proportional – Integral controller was designed using the Nelder-Mead optimization algorithm with objective function of the Integral Time Absolute Error criteria calculated using Simpson's one-third rule. The control performance of the proposed controller was analyzed by comparing the rise time, percent overshoot and settling time of the response with that of the conventional PID controller. The simulation results show that the Nelder-Mead optimization algorithm can be used and can produce a good control system with zero percent overshoot and shorter heating time compared to the achievements of the PID control system. In addition, the robustness test of the controller has shown that the proposed control system can effectively detect changes in the operating temperature. The control performance shown by the proposed controller is excellent. The Derivative Proportional – Integral control system designed based on optimization algorithm techniques can improve the performance of the glycerine purification process heating system to meet the purified glycerine requirements

    Advanced Flowrate Control of Petroleum Products in Transportation: An Optimized Modified Model Reference PID Approach

    Get PDF
    Efficient flowrate control is paramount for the seamless operation and reliability of petroleum transportation systems, where precise control of fluid movement ensures not only operational efficiency but also safety and cost-effectiveness. The main aim of this paper is to develop a highly effective modified model reference PID controller, tailored to ensure optimal flowrate control of petroleum products throughout their transportation. Initially, the petrol transportation process is analyzed to establish a suitable mathematical model based on vital factors like pipeline diameter, length, and pump attributes. However, using a basic first-order time delay model for petrol transportation systems is limiting due to inaccuracies, variable delay issues, safety oversights, and real-time control complexities. To improve this, the delay portion is approximated as a third-order transfer function to better reflect complex physical conditions. Subsequently, the PID controller is synthesized by modifying its structure to address flowrate control issues. These modifications primarily focus on the controller’s derivative component, involving the addition of a first-order filter and alterations to its structure. To optimize the proposed controller, the genetic, black hole, and zebra optimization techniques are employed, aiming to minimize an integral time absolute error cost function and ensure that the outlet flow of the controlled system closely follows the response of an appropriate reference model. They are chosen for their proficiency in complex optimization to enhance the controller's effectiveness by optimizing parameters within constraints, adapting to system dynamics, and ensuring optimal conditions. Through simulations, it is demonstrated that the proposed controller significantly enhances the stability and efficiency of the control system, while maintaining practical control signals. Moreover, the proposed modifications and intelligent tuning of the PID controller yield remarkable improvements compared to previous related work, resulting in a 36% reduction in rise time, a 63% reduction in settling time, an 80% reduction in overshoot, and a 98% reduction in cost value
    corecore