124 research outputs found

    Student Teaching and Research Laboratory Focusing on Brain-computer Interface Paradigms - A Creative Environment for Computer Science Students -

    Full text link
    This paper presents an applied concept of a brain-computer interface (BCI) student research laboratory (BCI-LAB) at the Life Science Center of TARA, University of Tsukuba, Japan. Several successful case studies of the student projects are reviewed together with the BCI Research Award 2014 winner case. The BCI-LAB design and project-based teaching philosophy is also explained. Future teaching and research directions summarize the review.Comment: 4 pages, 4 figures, accepted for EMBC 2015, IEEE copyrigh

    Bringing BCI into everyday life: Motor imagery in a pseudo realistic environment

    Get PDF
    Bringing Brain-Computer Interfaces (BCIs) into everyday life is a challenge because an out-of-lab environment implies the presence of variables that are largely beyond control of the user and the software application. This can severely corrupt signal quality as well as reliability of BCI control. Current BCI technology may fail in this application scenario because of the large amounts of noise, nonstationarity and movement artifacts. In this paper, we systematically investigate the performance of motor imagery BCI in a pseudo realistic environment. In our study 16 participants were asked to perform motor imagery tasks while dealing with different types of distractions such as vibratory stimulations or listening tasks. Our experiments demonstrate that standard BCI procedures are not robust to theses additional sources of noise, implicating that methods which work well in a lab environment, may perform poorly in realistic application scenarios. We discuss several promising research directions to tackle this important problem.BMBF, 01GQ1115, Adaptive Gehirn-Computer-Schnittstellen (BCI) in nichtstationären Umgebunge

    Decoding steady-state visual evoked potentials from electrocorticography

    Get PDF
    We report on a unique electrocorticography (ECoG) experiment in which Steady-State Visual Evoked Potentials (SSVEPs) to frequency-and phase-tagged stimuli were recorded from a large subdural grid covering the entire right occipital cortex of a human subject. The paradigm is popular in EEG-based Brain Computer Interfacing where selectable targets are encoded by different frequency-and/or phase-tagged stimuli. We compare the performance of two state-of-the-art SSVEP decoders on both ECoG-and scalp-recorded EEG signals, and show that ECoG-based decoding is more accurate for very short stimulation lengths (i.e., less than 1 s). Furthermore, whereas the accuracy of scalp-EEG decoding bene fi ts from a multi-electrode approach, to address interfering EEG responses and noise, ECoG decoding enjoys only a marginal improvement as even a single electrode, placed over the posterior part of the primary visual cortex, seems to suf fi ce. This study shows, for the fi rst time, that EEG-based SSVEP decoders can in principle be applied to ECoG, and can be expected to yield faster decoding speeds using less electrodes

    Multiple Frequencies Sequential Coding for SSVEP-Based Brain-Computer Interface

    Get PDF
    BACKGROUND: Steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has become one of the most promising modalities for a practical noninvasive BCI system. Owing to both the limitation of refresh rate of liquid crystal display (LCD) or cathode ray tube (CRT) monitor, and the specific physiological response property that only a very small number of stimuli at certain frequencies could evoke strong SSVEPs, the available frequencies for SSVEP stimuli are limited. Therefore, it may not be enough to code multiple targets with the traditional frequencies coding protocols, which poses a big challenge for the design of a practical SSVEP-based BCI. This study aimed to provide an innovative coding method to tackle this problem. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we present a novel protocol termed multiple frequencies sequential coding (MFSC) for SSVEP-based BCI. In MFSC, multiple frequencies are sequentially used in each cycle to code the targets. To fulfill the sequential coding, each cycle is divided into several coding epochs, and during each epoch, certain frequency is used. Obviously, different frequencies or the same frequency can be presented in the coding epochs, and the different epoch sequence corresponds to the different targets. To show the feasibility of MFSC, we used two frequencies to realize four targets and carried on an offline experiment. The current study shows that: 1) MFSC is feasible and efficient; 2) the performance of SSVEP-based BCI based on MFSC can be comparable to some existed systems. CONCLUSIONS/SIGNIFICANCE: The proposed protocol could potentially implement much more targets with the limited available frequencies compared with the traditional frequencies coding protocol. The efficiency of the new protocol was confirmed by real data experiment. We propose that the SSVEP-based BCI under MFSC might be a promising choice in the future

    Electroencephalogram Signal Processing For Hybrid Brain Computer Interface Systems

    Get PDF
    The goal of this research was to evaluate and compare three types of brain computer interface (BCI) systems, P300, steady state visually evoked potentials (SSVEP) and Hybrid as virtual spelling paradigms. Hybrid BCI is an innovative approach to combine the P300 and SSVEP. However, it is challenging to process the resulting hybrid signals to extract both information simultaneously and effectively. The major step executed toward the advancement to modern BCI system was to move the BCI techniques from traditional LED system to electronic LCD monitor. Such a transition allows not only to develop the graphics of interest but also to generate objects flickering at different frequencies. There were pilot experiments performed for designing and tuning the parameters of the spelling paradigms including peak detection for different range of frequencies of SSVEP BCI, placement of objects on LCD monitor, design of the spelling keyboard, and window time for the SSVEP peak detection processing. All the experiments were devised to evaluate the performance in terms of the spelling accuracy, region error, and adjacency error among all of the paradigms: P300, SSVEP and Hybrid. Due to the different nature of P300 and SSVEP, designing a hybrid P300-SSVEP signal processing scheme demands significant amount of research work in this area. Eventually, two critical questions in hybrid BCl are: (1) which signal processing strategy can best measure the user\u27s intent and (2) what a suitable paradigm is to fuse these two techniques in a simple but effective way. In order to answer these questions, this project focused mainly on developing signal processing and classification technique for hybrid BCI. Hybrid BCI was implemented by extracting the specific information from brain signals, selecting optimum features which contain maximum discrimination information about the speller characters of our interest and by efficiently classifying the hybrid signals. The designed spellers were developed with the aim to improve quality of life of patients with disability by utilizing visually controlled BCI paradigms. The paradigms consist of electrodes to record electroencephalogram signal (EEG) during stimulation, a software to analyze the collected data, and a computing device where the subject’s EEG is the input to estimate the spelled character. Signal processing phase included preliminary tasks as preprocessing, feature extraction, and feature selection. Captured EEG data are usually a superposition of the signals of interest with other unwanted signals from muscles, and from non-biological artifacts. The accuracy of each trial and average accuracy for subjects were computed. Overall, the average accuracy of the P300 and SSVEP spelling paradigm was 84% and 68.5 %. P300 spelling paradigms have better accuracy than both the SSVEP and hybrid paradigm. Hybrid paradigm has the average accuracy of 79 %. However, hybrid system is faster in time and more soothing to look than other paradigms. This work is significant because it has great potential for improving the BCI research in design and application of clinically suitable speller paradigm

    STATIC CODE ANALYSIS FOR SOFTWARE QUALITY IMPROVEMENT: A CASE STUDY IN BCI FRAMEWORK DEVELOPMENT

    Get PDF
    This paper shows how the systematic approach in software testing using static code analysis method can be used for improving the software quality of a BCI framework. The method is best performed during the development phase of framework programs. In the proposed approach, we evaluate several software metrics which are based on the principles of object oriented design. Since such method is depending on the underlying programming language, we describe the method in term of C++ language programming whereas the Qt platform is also currently being used. One of the most important metric is so called software complexity. Applying the software complexity calculation using both McCabe and Halstead method for the BCI framework which consists of two important types of BCI, those are SSVEP and P300, we found that there are two classes in the framework which have very complex and prone to violation of cohesion principle in OOP. The other metrics are fit the criteria of the proposed framework aspects, such as: MPC is less than 20; average complexity is around value of 5; and the maximum depth is below 10 blocks. Such variables are considered very important when further developing the BCI framework in the future
    • …
    corecore