30,345 research outputs found

    Optimal control theory for unitary transformations

    Full text link
    The dynamics of a quantum system driven by an external field is well described by a unitary transformation generated by a time dependent Hamiltonian. The inverse problem of finding the field that generates a specific unitary transformation is the subject of study. The unitary transformation which can represent an algorithm in a quantum computation is imposed on a subset of quantum states embedded in a larger Hilbert space. Optimal control theory (OCT) is used to solve the inversion problem irrespective of the initial input state. A unified formalism, based on the Krotov method is developed leading to a new scheme. The schemes are compared for the inversion of a two-qubit Fourier transform using as registers the vibrational levels of the X1ÎŁg+X^1\Sigma^+_g electronic state of Na2_2. Raman-like transitions through the A1ÎŁu+A^1\Sigma^+_u electronic state induce the transitions. Light fields are found that are able to implement the Fourier transform within a picosecond time scale. Such fields can be obtained by pulse-shaping techniques of a femtosecond pulse. Out of the schemes studied the square modulus scheme converges fastest. A study of the implementation of the QQ qubit Fourier transform in the Na2_2 molecule was carried out for up to 5 qubits. The classical computation effort required to obtain the algorithm with a given fidelity is estimated to scale exponentially with the number of levels. The observed moderate scaling of the pulse intensity with the number of qubits in the transformation is rationalized.Comment: 32 pages, 6 figure

    Search complexity and resource scaling for the quantum optimal control of unitary transformations

    Full text link
    The optimal control of unitary transformations is a fundamental problem in quantum control theory and quantum information processing. The feasibility of performing such optimizations is determined by the computational and control resources required, particularly for systems with large Hilbert spaces. Prior work on unitary transformation control indicates that (i) for controllable systems, local extrema in the search landscape for optimal control of quantum gates have null measure, facilitating the convergence of local search algorithms; but (ii) the required time for convergence to optimal controls can scale exponentially with Hilbert space dimension. Depending on the control system Hamiltonian, the landscape structure and scaling may vary. This work introduces methods for quantifying Hamiltonian-dependent and kinematic effects on control optimization dynamics in order to classify quantum systems according to the search effort and control resources required to implement arbitrary unitary transformations

    Quantifying the Unitary Generation of Coherence From Thermal Quantum Systems

    Full text link
    The unitary generation of coherence from an incoherent thermal state is investigated. We consider a completely controllable Hamiltonian allowing to generate all possible unitary transformations. Optimizing the unitary control to achieve maximum coherence leads to a micro-canonical energy distribution on the diagonal energy representation. We demonstrate such a control scenario starting from a Hamiltonian utilizing optimal control theory for unitary targets. Generating coherence from an incoherent initial state always costs external work. By constraining the amount of work invested by the control, maximum coherence leads to a canonical energy population distribution. When the optimization procedure constrains the final energy too tightly local suboptimal traps are found. The global optimum is obtained when a small Lagrange multiplier is employed to constrain the final energy. Finally, we explore constraining the generated coherence to be close to the diagonal in the energy representation

    Optimal Control Theory for Continuous Variable Quantum Gates

    Full text link
    We apply the methodology of optimal control theory to the problem of implementing quantum gates in continuous variable systems with quadratic Hamiltonians. We demonstrate that it is possible to define a fidelity measure for continuous variable (CV) gate optimization that is devoid of traps, such that the search for optimal control fields using local algorithms will not be hindered. The optimal control of several quantum computing gates, as well as that of algorithms composed of these primitives, is investigated using several typical physical models and compared for discrete and continuous quantum systems. Numerical simulations indicate that the optimization of generic CV quantum gates is inherently more expensive than that of generic discrete variable quantum gates, and that the exact-time controllability of CV systems plays an important role in determining the maximum achievable gate fidelity. The resulting optimal control fields typically display more complicated Fourier spectra that suggest a richer variety of possible control mechanisms. Moreover, the ability to control interactions between qunits is important for delimiting the total control fluence. The comparative ability of current experimental protocols to implement such time-dependent controls may help determine which physical incarnations of CV quantum information processing will be the easiest to implement with optimal fidelity.Comment: 39 pages, 11 figure

    Time-optimal synthesis of unitary transformations in coupled fast and slow qubit system

    Full text link
    In this paper, we study time-optimal control problems related to system of two coupled qubits where the time scales involved in performing unitary transformations on each qubit are significantly different. In particular, we address the case where unitary transformations produced by evolutions of the coupling take much longer time as compared to the time required to produce unitary transformations on the first qubit but much shorter time as compared to the time to produce unitary transformations on the second qubit. We present a canonical decomposition of SU(4) in terms of the subgroup SU(2)xSU(2)xU(1), which is natural in understanding the time-optimal control problem of such a coupled qubit system with significantly different time scales. A typical setting involves dynamics of a coupled electron-nuclear spin system in pulsed electron paramagnetic resonance experiments at high fields. Using the proposed canonical decomposition, we give time-optimal control algorithms to synthesize various unitary transformations of interest in coherent spectroscopy and quantum information processing.Comment: 8 pages, 3 figure

    Trade-off Between Work and Correlations in Quantum Thermodynamics

    Full text link
    Quantum thermodynamics and quantum information are two frameworks for employing quantum mechanical systems for practical tasks, exploiting genuine quantum features to obtain advantages with respect to classical implementations. While appearing disconnected at first, the main resources of these frameworks, work and correlations, have a complicated yet interesting relationship that we examine here. We review the role of correlations in quantum thermodynamics, with a particular focus on the conversion of work into correlations. We provide new insights into the fundamental work cost of correlations and the existence of optimally correlating unitaries, and discuss relevant open problems.Comment: 11 pages, 1 figure

    Discrimination of two-qubit unitaries via local operations and classical communication

    Full text link
    Distinguishability is a fundamental and operational task generally connected to information applications. In quantum information theory, from the postulates of quantum mechanics it often has an intrinsic limitation, which then dictates and also characterises capabilities of related information tasks. In this work, we consider discrimination between bipartite two-qubit unitary transformations by local operations and classical communication (LOCC) and its relations to entangling capabilities of given unitaries. We show that a pair of entangling unitaries which do not contain local parts, if they are perfectly distinguishable by global operations, can also be perfectly distinguishable by LOCC. There also exist non-entangling unitaries, e.g. local unitaries, that are perfectly discriminated by global operations but not by LOCC. The results show that capabilities of LOCC are strictly restricted than global operations in distinguishing bipartite unitaries for a finite number of repetitions, contrast to discrimination of a pair of bipartite states and also to asymptotic discrimination of unitaries.Comment: 9pages, 3 figure

    Simulating Hamiltonians in Quantum Networks: Efficient Schemes and Complexity Bounds

    Get PDF
    We address the problem of simulating pair-interaction Hamiltonians in n node quantum networks where the subsystems have arbitrary, possibly different, dimensions. We show that any pair-interaction can be used to simulate any other by applying sequences of appropriate local control sequences. Efficient schemes for decoupling and time reversal can be constructed from orthogonal arrays. Conditions on time optimal simulation are formulated in terms of spectral majorization of matrices characterizing the coupling parameters. Moreover, we consider a specific system of n harmonic oscillators with bilinear interaction. In this case, decoupling can efficiently be achieved using the combinatorial concept of difference schemes. For this type of interactions we present optimal schemes for inversion.Comment: 19 pages, LaTeX2

    How much is a quantum controller controlled by the controlled system?

    Full text link
    We consider unitary transformations on a bipartite system A x B. To what extent entails the ability to transmit information from A to B the ability to transfer information in the converse direction? We prove a dimension-dependent lower bound on the classical channel capacity C(A<--B) in terms of the capacity C(A-->B) for the case that the bipartite unitary operation consists of controlled local unitaries on B conditioned on basis states on A. This can be interpreted as a statement on the strength of the inevitable backaction of a quantum system on its controller. If the local operations are given by the regular representation of a finite group G we have C(A-->B)=log |G| and C(A<--B)=log N where N is the sum over the degrees of all inequivalent representations. Hence the information deficit C(A-->B)-C(A<--B) between the forward and the backward capacity depends on the "non-abelianness" of the control group. For regular representations, the ratio between backward and forward capacities cannot be smaller than 1/2. The symmetric group S_n reaches this bound asymptotically. However, for the general case (without group structure) all bounds must depend on the dimensions since it is known that the ratio can tend to zero.Comment: 17 pages, references added, results slightly improve
    • …
    corecore