6,203 research outputs found

    Optical position meters analyzed in the non-inertial reference frames

    Full text link
    In the framework of General Relativity we develop a method for analysis of the operation of the optical position meters in their photodetectors proper reference frames. These frames are non-inertial in general due to the action of external fluctuative forces on meters test masses, including detectors. For comparison we also perform the calculations in the laboratory (globally inertial) reference frame and demonstrate that for certain optical schemes laboratory-based analysis results in unmeasurable quantities, in contrast to the detector-based analysis. We also calculate the response of the simplest optical meters to weak plane gravitational waves and fluctuative motions of their test masses. It is demonstrated that for the round-trip meter analysis in both the transverse-traceless (TT) and local Lorentz (LL) gauges produces equal results, while for the forward-trip meter corresponding results differ in accordance with different physical assumptions (e.g. procedure of clocks synchronization) implicitly underlying the construction of the TT and LL gauges.Comment: 10 pages, 2 figures; co-author added, added section VC with discussion of procedures of clocks synchronization, corrected sign in old Eq.17 (currently it is Eq.18

    Pose and Shape Reconstruction of a Noncooperative Spacecraft Using Camera and Range Measurements

    Get PDF
    Recent interest in on-orbit proximity operations has pushed towards the development of autonomous GNC strategies. In this sense, optical navigation enables a wide variety of possibilities as it can provide information not only about the kinematic state but also about the shape of the observed object. Various mission architectures have been either tested in space or studied on Earth. The present study deals with on-orbit relative pose and shape estimation with the use of a monocular camera and a distance sensor. The goal is to develop a filter which estimates an observed satellite's relative position, velocity, attitude, and angular velocity, along with its shape, with the measurements obtained by a camera and a distance sensor mounted on board a chaser which is on a relative trajectory around the target. The filter's efficiency is proved with a simulation on a virtual target object. The results of the simulation, even though relevant to a simplified scenario, show that the estimation process is successful and can be considered a promising strategy for a correct and safe docking maneuver

    Charged Particles and the Electro-Magnetic Field in Non-Inertial Frames of Minkowski Spacetime: II. Applications: Rotating Frames, Sagnac Effect, Faraday Rotation, Wrap-up Effect

    Full text link
    We apply the theory of non-inertial frames in Minkowski space-time, developed in the previous paper, to various relevant physical systems. We give the 3+1 description without coordinate-singularities of the rotating disk and the Sagnac effect, with added comments on pulsar magnetosphere and on a relativistic extension of the Earth-fixed coordinate system. Then we study properties of Maxwell equations in non-inertial frames like the wrap-up effect and the Faraday rotation in astrophysics.Comment: This paper and the second one are an adaptation of arXiv 0812.3057 for publication on Int.J.Geom. Methods in Modern Phys. 36

    Onboard utilization of ground control points for image correction. Volume 1: Executive summary

    Get PDF
    Operation of a navigation system, centered around image correction, was simulated and the system performance was analyzed. Onboard utilization of ground control points for image correction is summarized. Simulation results, and recommendations for future mission requirements are presented

    Space-Time Reference with an Optical Link

    Full text link
    We describe a method for realizing a high-performance Space-Time Reference (STR) using a stable atomic clock in a precisely defined orbit and synchronizing the orbiting clock to high-accuracy atomic clocks on the ground. The synchronization would be accomplished using a two-way lasercom link between ground and space. The basic concept is to take advantage of the highest-performance cold-atom atomic clocks at national standards laboratories on the ground and to transfer that performance to an orbiting clock that has good stability and that serves as a "frequency-flywheel" over time-scales of a few hours. The two-way lasercom link would also provide precise range information and thus precise orbit determination (POD). With a well-defined orbit and a synchronized clock, the satellite cold serve as a high-accuracy Space-Time Reference, providing precise time worldwide, a valuable reference frame for geodesy, and independent high-accuracy measurements of GNSS clocks. With reasonable assumptions, a practical system would be able to deliver picosecond timing worldwide and millimeter orbit determination

    Monocular Vision Localization Using a Gimbaled Laser Range Sensor

    Get PDF
    There have been great advances in recent years in the area of indoor navigation. Many of these new navigation systems rely on digital images to aid an inertial navigation estimates. The Air Force Institute of Technology (AFIT) has been conducting research in this area for a number of years. The image-aiding techniques are centered around tracking stationary features in order to improve inertial navigation estimates. Previous research has used stereo vision systems or terrain constraints with monocular systems to estimate feature locations. While these methods have shown good results, they do have drawbacks. First, as unmanned exploration vehicles become smaller in size the distance available to create a baseline between two cameras decreases resulting in a decrease of distancing accuracy. Second, if using a monocular system, terrain data might not be known in an unexplored environment. This research explores the use of a small gimbaled laser range sensor and monocular camera to estimate feature locations. The gimbaled system consists of a commercial off-the-shelf range sensor, a pair of hobby-style servos, and a micro controller that accepts azimuth and elevation commands. The system is approximately 15x8x12 cm and weighs less than 120 grams. This novel approach, called laser-aided image inertial navigation, provides precise depth measurements to key features. The location of these key features are then calculated based on the current state estimates of an Extended Kalman filter. This method of estimating feature locations is tested both by simulation and real world imagery. Navigation experiments are presented which compare this method with previous image-aided filters. While only a limited number of tests were conducted, simulated and real world flight tests show that the monocular laser-aided filter can accurately estimate the trajectory of a vehicle to within a few tenths of a meter. This is done without terrain constraints or any prior knowledge of the operational area

    Design study for LANDSAT-D attitude control system

    Get PDF
    The gimballed Ku-band antenna system for communication with TDRS was studied. By means of an error analysis it was demonstrated that the antenna cannot be open loop pointed to TDRS by an onboard programmer, but that an autotrack system was required. After some tradeoffs, a two-axis, azimuth-elevation type gimbal configuration was recommended for the antenna. It is shown that gimbal lock only occurs when LANDSAT-D is over water where a temporary loss of the communication link to TDRS is of no consequence. A preliminary gimbal control system design is also presented. A digital computer program was written that computes antenna gimbal angle profiles, assesses percent antenna beam interference with the solar array, and determines whether the spacecraft is over land or water, a lighted earth or a dark earth, and whether the spacecraft is in eclipse
    • …
    corecore