4,632 research outputs found

    Neural Lyapunov Control

    Full text link
    We propose new methods for learning control policies and neural network Lyapunov functions for nonlinear control problems, with provable guarantee of stability. The framework consists of a learner that attempts to find the control and Lyapunov functions, and a falsifier that finds counterexamples to quickly guide the learner towards solutions. The procedure terminates when no counterexample is found by the falsifier, in which case the controlled nonlinear system is provably stable. The approach significantly simplifies the process of Lyapunov control design, provides end-to-end correctness guarantee, and can obtain much larger regions of attraction than existing methods such as LQR and SOS/SDP. We show experiments on how the new methods obtain high-quality solutions for challenging control problems.Comment: NeurIPS 201

    Control of quantum phenomena: Past, present, and future

    Full text link
    Quantum control is concerned with active manipulation of physical and chemical processes on the atomic and molecular scale. This work presents a perspective of progress in the field of control over quantum phenomena, tracing the evolution of theoretical concepts and experimental methods from early developments to the most recent advances. The current experimental successes would be impossible without the development of intense femtosecond laser sources and pulse shapers. The two most critical theoretical insights were (1) realizing that ultrafast atomic and molecular dynamics can be controlled via manipulation of quantum interferences and (2) understanding that optimally shaped ultrafast laser pulses are the most effective means for producing the desired quantum interference patterns in the controlled system. Finally, these theoretical and experimental advances were brought together by the crucial concept of adaptive feedback control, which is a laboratory procedure employing measurement-driven, closed-loop optimization to identify the best shapes of femtosecond laser control pulses for steering quantum dynamics towards the desired objective. Optimization in adaptive feedback control experiments is guided by a learning algorithm, with stochastic methods proving to be especially effective. Adaptive feedback control of quantum phenomena has found numerous applications in many areas of the physical and chemical sciences, and this paper reviews the extensive experiments. Other subjects discussed include quantum optimal control theory, quantum control landscapes, the role of theoretical control designs in experimental realizations, and real-time quantum feedback control. The paper concludes with a prospective of open research directions that are likely to attract significant attention in the future.Comment: Review article, final version (significantly updated), 76 pages, accepted for publication in New J. Phys. (Focus issue: Quantum control

    Comparative evaluation of approaches in T.4.1-4.3 and working definition of adaptive module

    Get PDF
    The goal of this deliverable is two-fold: (1) to present and compare different approaches towards learning and encoding movements us- ing dynamical systems that have been developed by the AMARSi partners (in the past during the first 6 months of the project), and (2) to analyze their suitability to be used as adaptive modules, i.e. as building blocks for the complete architecture that will be devel- oped in the project. The document presents a total of eight approaches, in two groups: modules for discrete movements (i.e. with a clear goal where the movement stops) and for rhythmic movements (i.e. which exhibit periodicity). The basic formulation of each approach is presented together with some illustrative simulation results. Key character- istics such as the type of dynamical behavior, learning algorithm, generalization properties, stability analysis are then discussed for each approach. We then make a comparative analysis of the different approaches by comparing these characteristics and discussing their suitability for the AMARSi project

    Connections Between Adaptive Control and Optimization in Machine Learning

    Full text link
    This paper demonstrates many immediate connections between adaptive control and optimization methods commonly employed in machine learning. Starting from common output error formulations, similarities in update law modifications are examined. Concepts in stability, performance, and learning, common to both fields are then discussed. Building on the similarities in update laws and common concepts, new intersections and opportunities for improved algorithm analysis are provided. In particular, a specific problem related to higher order learning is solved through insights obtained from these intersections.Comment: 18 page

    Principles of Neuromorphic Photonics

    Full text link
    In an age overrun with information, the ability to process reams of data has become crucial. The demand for data will continue to grow as smart gadgets multiply and become increasingly integrated into our daily lives. Next-generation industries in artificial intelligence services and high-performance computing are so far supported by microelectronic platforms. These data-intensive enterprises rely on continual improvements in hardware. Their prospects are running up against a stark reality: conventional one-size-fits-all solutions offered by digital electronics can no longer satisfy this need, as Moore's law (exponential hardware scaling), interconnection density, and the von Neumann architecture reach their limits. With its superior speed and reconfigurability, analog photonics can provide some relief to these problems; however, complex applications of analog photonics have remained largely unexplored due to the absence of a robust photonic integration industry. Recently, the landscape for commercially-manufacturable photonic chips has been changing rapidly and now promises to achieve economies of scale previously enjoyed solely by microelectronics. The scientific community has set out to build bridges between the domains of photonic device physics and neural networks, giving rise to the field of \emph{neuromorphic photonics}. This article reviews the recent progress in integrated neuromorphic photonics. We provide an overview of neuromorphic computing, discuss the associated technology (microelectronic and photonic) platforms and compare their metric performance. We discuss photonic neural network approaches and challenges for integrated neuromorphic photonic processors while providing an in-depth description of photonic neurons and a candidate interconnection architecture. We conclude with a future outlook of neuro-inspired photonic processing.Comment: 28 pages, 19 figure

    A continuous-time analysis of distributed stochastic gradient

    Full text link
    We analyze the effect of synchronization on distributed stochastic gradient algorithms. By exploiting an analogy with dynamical models of biological quorum sensing -- where synchronization between agents is induced through communication with a common signal -- we quantify how synchronization can significantly reduce the magnitude of the noise felt by the individual distributed agents and by their spatial mean. This noise reduction is in turn associated with a reduction in the smoothing of the loss function imposed by the stochastic gradient approximation. Through simulations on model non-convex objectives, we demonstrate that coupling can stabilize higher noise levels and improve convergence. We provide a convergence analysis for strongly convex functions by deriving a bound on the expected deviation of the spatial mean of the agents from the global minimizer for an algorithm based on quorum sensing, the same algorithm with momentum, and the Elastic Averaging SGD (EASGD) algorithm. We discuss extensions to new algorithms which allow each agent to broadcast its current measure of success and shape the collective computation accordingly. We supplement our theoretical analysis with numerical experiments on convolutional neural networks trained on the CIFAR-10 dataset, where we note a surprising regularizing property of EASGD even when applied to the non-distributed case. This observation suggests alternative second-order in-time algorithms for non-distributed optimization that are competitive with momentum methods.Comment: 9/14/19 : Final version, accepted for publication in Neural Computation. 4/7/19 : Significant edits: addition of simulations, deep network results, and revisions throughout. 12/28/18: Initial submissio
    • …
    corecore