4,129 research outputs found

    Enhancing Decision Support for Secondary Education with OLAP

    Get PDF
    Decision-making is one of the most critical processes taking place in a modern school. It is a necessary competence for school administrators and managerial staff especially in Education Directorates who often have to make decisions regarding the implementation of education strategies and policies. It is also important for teaching staff and school curriculum designers in order to plan teaching methods and monitor student performance. Nowadays many school functions are supported by dedicated information systems. Business Intelligence (BI) is a widely used set of techniques and tools for the transformation of raw data into meaningful and useful information for business analysis purposes. They include Online Analytical Processing (OLAP) in order to provide historical, current and predictive views of business operations. Schools in secondary education can be viewed as small organizations where effective decision making is required at many areas and levels. The aim of this project is the research of feasibility of applying OLAP Decision Support Systems in Education and Education Management, any possible benefits as well as possible enhancements. The outcome is the design and implementation of an enhanced OLAP system applied in a specific educational setting based on our case study

    Solutions for decision support in university management

    Get PDF
    The paper proposes an overview of decision support systems in order to define the role of a system to assist decision in university management. The authors present new technologies and the basic concepts of multidimensional data analysis using models of business processes within the universities. Based on information provided by scientific literature and on the authors’ experience, the study aims to define selection criteria in choosing a development environment for designing a support system dedicated to university management. The contributions consist in designing a data warehouse model and models of OLAP analysis to assist decision in university management.university management, decision support, multidimensional analysis, data warehouse, OLAP

    Combining Objects with Rules to Represent Aggregation Knowledge in Data Warehouse and OLAP Systems

    Get PDF
    Data warehouses are based on multidimensional modeling. Using On-Line Analytical Processing (OLAP) tools, decision makers navigate through and analyze multidimensional data. Typically, users need to analyze data at different aggregation levels (using roll-up and drill-down functions). Therefore, aggregation knowledge should be adequately represented in conceptual multidimensional models, and mapped in subsequent logical and physical models. However, current conceptual multidimensional models poorly represent aggregation knowledge, which (1) has a complex structure and dynamics and (2) is highly contextual. In order to account for the characteristics of this knowledge, we propose to represent it with objects (UML class diagrams) and rules in Production Rule Representation (PRR) language. Static aggregation knowledge is represented in the class diagrams, while rules represent the dynamics (i.e. how aggregation may be performed depending on context). We present the class diagrams, and a typology and examples of associated rules. We argue that this representation of aggregation knowledge allows an early modeling of user requirements in a data warehouse project.Aggregation; Conceptual Multidimensional Model; Data Warehouse; On-line Analytical Processing (OLAP); Production Rule; UML

    Combining Objects with Rules to Represent Aggregation Knowledge in Data Warehouse and OLAP Systems

    Get PDF
    Les entrepôts de données reposent sur la modélisation multidimensionnelle. A l'aide d'outils OLAP, les décideurs analysent les données à différents niveaux d'agrégation. Il est donc nécessaire de représenter les connaissances d'agrégation dans les modèles conceptuels multidimensionnels, puis de les traduire dans les modèles logiques et physiques. Cependant, les modèles conceptuels multidimensionnels actuels représentent imparfaitement les connaissances d'agrégation, qui (1) ont une structure et une dynamique complexes et (2) sont fortement contextuelles. Afin de prendre en compte les caractéristiques de ces connaissances, nous proposons de les représenter avec des objets (diagrammes de classes UML) et des règles en langage PRR (Production Rule Representation). Les connaissances d'agrégation statiques sont représentées dans les digrammes de classes, tandis que les règles représentent la dynamique (c'est-à-dire comment l'agrégation peut être effectuée en fonction du contexte). Nous présentons les diagrammes de classes, ainsi qu'une typologie et des exemples de règles associées.Agrégation ; Entrepôt de données ; Modèle conceptuel multidimensionnel ; OLAP ; Règle de production ; UML

    Using Ontologies for the Design of Data Warehouses

    Get PDF
    Obtaining an implementation of a data warehouse is a complex task that forces designers to acquire wide knowledge of the domain, thus requiring a high level of expertise and becoming it a prone-to-fail task. Based on our experience, we have detected a set of situations we have faced up with in real-world projects in which we believe that the use of ontologies will improve several aspects of the design of data warehouses. The aim of this article is to describe several shortcomings of current data warehouse design approaches and discuss the benefit of using ontologies to overcome them. This work is a starting point for discussing the convenience of using ontologies in data warehouse design.Comment: 15 pages, 2 figure
    corecore