556,327 research outputs found
Probabilistic Numerics and Uncertainty in Computations
We deliver a call to arms for probabilistic numerical methods: algorithms for
numerical tasks, including linear algebra, integration, optimization and
solving differential equations, that return uncertainties in their
calculations. Such uncertainties, arising from the loss of precision induced by
numerical calculation with limited time or hardware, are important for much
contemporary science and industry. Within applications such as climate science
and astrophysics, the need to make decisions on the basis of computations with
large and complex data has led to a renewed focus on the management of
numerical uncertainty. We describe how several seminal classic numerical
methods can be interpreted naturally as probabilistic inference. We then show
that the probabilistic view suggests new algorithms that can flexibly be
adapted to suit application specifics, while delivering improved empirical
performance. We provide concrete illustrations of the benefits of probabilistic
numeric algorithms on real scientific problems from astrometry and astronomical
imaging, while highlighting open problems with these new algorithms. Finally,
we describe how probabilistic numerical methods provide a coherent framework
for identifying the uncertainty in calculations performed with a combination of
numerical algorithms (e.g. both numerical optimisers and differential equation
solvers), potentially allowing the diagnosis (and control) of error sources in
computations.Comment: Author Generated Postprint. 17 pages, 4 Figures, 1 Tabl
New Laplace and Helmholtz solvers
New numerical algorithms based on rational functions are introduced that can
solve certain Laplace and Helmholtz problems on two-dimensional domains with
corners faster and more accurately than the standard methods of finite elements
and integral equations. The new algorithms point to a reconsideration of the
assumptions underlying existing numerical analysis for partial differential
equations
Numerical integration of Heath-Jarrow-Morton model of interest rates
We propose and analyze numerical methods for the Heath-Jarrow-Morton (HJM)
model. To construct the methods, we first discretize the infinite dimensional
HJM equation in maturity time variable using quadrature rules for approximating
the arbitrage-free drift. This results in a finite dimensional system of
stochastic differential equations (SDEs) which we approximate in the weak and
mean-square sense using the general theory of numerical integration of SDEs.
The proposed numerical algorithms are computationally highly efficient due to
the use of high-order quadrature rules which allow us to take relatively large
discretization steps in the maturity time without affecting overall accuracy of
the algorithms. Convergence theorems for the methods are proved. Results of
some numerical experiments with European-type interest rate derivatives are
presented.Comment: 48 page
Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project
The Numerical INJection Analysis (NINJA) project is a collaborative effort
between members of the numerical relativity and gravitational-wave data
analysis communities. The purpose of NINJA is to study the sensitivity of
existing gravitational-wave search algorithms using numerically generated
waveforms and to foster closer collaboration between the numerical relativity
and data analysis communities. We describe the results of the first NINJA
analysis which focused on gravitational waveforms from binary black hole
coalescence. Ten numerical relativity groups contributed numerical data which
were used to generate a set of gravitational-wave signals. These signals were
injected into a simulated data set, designed to mimic the response of the
Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this
data using search and parameter-estimation pipelines. Matched filter
algorithms, un-modelled-burst searches and Bayesian parameter-estimation and
model-selection algorithms were applied to the data. We report the efficiency
of these search methods in detecting the numerical waveforms and measuring
their parameters. We describe preliminary comparisons between the different
search methods and suggest improvements for future NINJA analyses.Comment: 56 pages, 25 figures; various clarifications; accepted to CQ
Sparsity Constrained Nonlinear Optimization: Optimality Conditions and Algorithms
This paper treats the problem of minimizing a general continuously
differentiable function subject to sparsity constraints. We present and analyze
several different optimality criteria which are based on the notions of
stationarity and coordinate-wise optimality. These conditions are then used to
derive three numerical algorithms aimed at finding points satisfying the
resulting optimality criteria: the iterative hard thresholding method and the
greedy and partial sparse-simplex methods. The first algorithm is essentially a
gradient projection method while the remaining two algorithms are of coordinate
descent type. The theoretical convergence of these methods and their relations
to the derived optimality conditions are studied. The algorithms and results
are illustrated by several numerical examples.Comment: submitted to SIAM Optimizatio
- …