3,020 research outputs found
Modelling cell motility and chemotaxis with evolving surface finite elements
We present a mathematical and a computational framework for the modelling of cell motility. The cell membrane is represented by an evolving surface, with the movement of the cell determined by the interaction of various forces that act normal to the surface. We consider external forces such as those that may arise owing to inhomogeneities in the medium and a pressure that constrains the enclosed volume, as well as internal forces that arise from the reaction of the cells' surface to stretching and bending. We also consider a protrusive force associated with a reaction-diffusion system (RDS) posed on the cell membrane, with cell polarization modelled by this surface RDS. The computational method is based on an evolving surface finite-element method. The general method can account for the large deformations that arise in cell motility and allows the simulation of cell migration in three dimensions. We illustrate applications of the proposed modelling framework and numerical method by reporting on numerical simulations of a model for eukaryotic chemotaxis and a model for the persistent movement of keratocytes in two and three space dimensions. Movies of the simulated cells can be obtained from http://homepages.warwick.ac.uk/maskae/CV_Warwick/Chemotaxis.html
Confinement by biased velocity jumps: aggregation of Escherichia coli
We investigate a linear kinetic equation derived from a velocity jump process
modelling bacterial chemotaxis in the presence of an external chemical signal
centered at the origin. We prove the existence of a positive equilibrium
distribution with an exponential decay at infinity. We deduce a hypocoercivity
result, namely: the solution of the Cauchy problem converges exponentially fast
towards the stationary state. The strategy follows [J. Dolbeault, C. Mouhot,
and C. Schmeiser, Hypocoercivity for linear kinetic equations conserving mass,
Trans. AMS 2014]. The novelty here is that the equilibrium does not belong to
the null spaces of the collision operator and of the transport operator. From a
modelling viewpoint it is related to the observation that exponential
confinement is generated by a spatially inhomogeneous bias in the velocity jump
process.Comment: 15 page
Well-balanced and asymptotic preserving schemes for kinetic models
In this paper, we propose a general framework for designing numerical schemes
that have both well-balanced (WB) and asymptotic preserving (AP) properties,
for various kinds of kinetic models. We are interested in two different
parameter regimes, 1) When the ratio between the mean free path and the
characteristic macroscopic length tends to zero, the density can be
described by (advection) diffusion type (linear or nonlinear) macroscopic
models; 2) When = O(1), the models behave like hyperbolic equations
with source terms and we are interested in their steady states. We apply the
framework to three different kinetic models: neutron transport equation and its
diffusion limit, the transport equation for chemotaxis and its Keller-Segel
limit, and grey radiative transfer equation and its nonlinear diffusion limit.
Numerical examples are given to demonstrate the properties of the schemes
A High Order Stochastic Asymptotic Preserving Scheme for Chemotaxis Kinetic Models with Random Inputs
In this paper, we develop a stochastic Asymptotic-Preserving (sAP) scheme for
the kinetic chemotaxis system with random inputs, which will converge to the
modified Keller-Segel model with random inputs in the diffusive regime. Based
on the generalized Polynomial Chaos (gPC) approach, we design a high order
stochastic Galerkin method using implicit-explicit (IMEX) Runge-Kutta (RK) time
discretization with a macroscopic penalty term. The new schemes improve the
parabolic CFL condition to a hyperbolic type when the mean free path is small,
which shows significant efficiency especially in uncertainty quantification
(UQ) with multi-scale problems. The stochastic Asymptotic-Preserving property
will be shown asymptotically and verified numerically in several tests. Many
other numerical tests are conducted to explore the effect of the randomness in
the kinetic system, in the aim of providing more intuitions for the theoretic
study of the chemotaxis models
Mathematical description of bacterial traveling pulses
The Keller-Segel system has been widely proposed as a model for bacterial
waves driven by chemotactic processes. Current experiments on {\em E. coli}
have shown precise structure of traveling pulses. We present here an
alternative mathematical description of traveling pulses at a macroscopic
scale. This modeling task is complemented with numerical simulations in
accordance with the experimental observations. Our model is derived from an
accurate kinetic description of the mesoscopic run-and-tumble process performed
by bacteria. This model can account for recent experimental observations with
{\em E. coli}. Qualitative agreements include the asymmetry of the pulse and
transition in the collective behaviour (clustered motion versus dispersion). In
addition we can capture quantitatively the main characteristics of the pulse
such as the speed and the relative size of tails. This work opens several
experimental and theoretical perspectives. Coefficients at the macroscopic
level are derived from considerations at the cellular scale. For instance the
stiffness of the signal integration process turns out to have a strong effect
on collective motion. Furthermore the bottom-up scaling allows to perform
preliminary mathematical analysis and write efficient numerical schemes. This
model is intended as a predictive tool for the investigation of bacterial
collective motion
Numerical methods for one-dimensional aggregation equations
We focus in this work on the numerical discretization of the one dimensional
aggregation equation \pa_t\rho + \pa_x (v\rho)=0, , in the
attractive case. Finite time blow up of smooth initial data occurs for
potential having a Lipschitz singularity at the origin. A numerical
discretization is proposed for which the convergence towards duality solutions
of the aggregation equation is proved. It relies on a careful choice of the
discretized macroscopic velocity in order to give a sense to the product . Moreover, using the same idea, we propose an asymptotic preserving
scheme for a kinetic system in hyperbolic scaling converging towards the
aggregation equation in hydrodynamical limit. Finally numerical simulations are
provided to illustrate the results
- …