302 research outputs found

    Multiobjective Design Optimization Of Gas Turbine Blade With Emphasis On Internal Cooling

    Get PDF
    In the design of mechanical components, numerical simulations and experimental methods are commonly used for design creation (or modification) and design optimization. However, a major challenge of using simulation and experimental methods is that they are timeconsuming and often cost-prohibitive for the designer. In addition, the simultaneous interactions between aerodynamic, thermodynamic and mechanical integrity objectives for a particular component or set of components are difficult to accurately characterize, even with the existing simulation tools and experimental methods. The current research and practice of using numerical simulations and experimental methods do little to address the simultaneous “satisficing” of multiple and often conflicting design objectives that influence the performance and geometry of a component. This is particularly the case for gas turbine systems that involve a large number of complex components with complicated geometries. Numerous experimental and numerical studies have demonstrated success in generating effective designs for mechanical components; however, their focus has been primarily on optimizing a single design objective based on a limited set of design variables and associated values. In this research, a multiobjective design optimization framework to solve a set of userspecified design objective functions for mechanical components is proposed. The framework integrates a numerical simulation and a nature-inspired optimization procedure that iteratively perturbs a set of design variables eventually converging to a set of tradeoff design solutions. In this research, a gas turbine engine system is used as the test application for the proposed framework. More specifically, the optimization of the gas turbine blade internal cooling channel configuration is performed. This test application is quite relevant as gas turbine engines serve a iv critical role in the design of the next-generation power generation facilities around the world. Furthermore, turbine blades require better cooling techniques to increase their cooling effectiveness to cope with the increase in engine operating temperatures extending the useful life of the blades. The performance of the proposed framework is evaluated via a computational study, where a set of common, real-world design objectives and a set of design variables that directly influence the set of objectives are considered. Specifically, three objectives are considered in this study: (1) cooling channel heat transfer coefficient, which measures the rate of heat transfer and the goal is to maximize this value; (2) cooling channel air pressure drop, where the goal is to minimize this value; and (3) cooling channel geometry, specifically the cooling channel cavity area, where the goal is to maximize this value. These objectives, which are conflicting, directly influence the cooling effectiveness of a gas turbine blade and the material usage in its design. The computational results show the proposed optimization framework is able to generate, evaluate and identify thousands of competitive tradeoff designs in a fraction of the time that it would take designers using the traditional simulation tools and experimental methods commonly used for mechanical component design generation. This is a significant step beyond the current research and applications of design optimization to gas turbine blades, specifically, and to mechanical components, in general

    Detailed Understanding of Flow, Heat Transfer, and Pressure Drop Behavior in a Square Channel With 45 Deg Ribs

    Get PDF
    Internal Duct Cooling (IDC) with rib turbulators is one of the common cooling techniques applied inside the turbine airfoils. It is very important for the gas turbine industry to design and develop an optimized cooling channel that maximizes the amount of heat removed, while simultaneously minimizing the pressure drop for a target overall cooling effectiveness. Angled ribs perform superior to the transverse ribs due to additional secondary flow associated with them. However, they result in a highly non-homogenous heat transfer distribution, which is a manifestation of the complex, turbulent flow field inside the channel. It is very important to comprehend the secondary flow physics to characterize the heat transfer distribution in such angled ribbed channels. Additionally, due to the manufacturing constraint, the gas turbine industry encounters a challenge to make ribs edge sharp and results in ribs with rounded edges. The one of the main objectives of the present study is to provide a fundamental understanding of the flow physics on the heat transfer and pressure drop behavior in 45° ribbed channels both with sharp and rounded-edge ribs. It is found that the secondary flow has a significant effect on the heat transfer behavior for both types of ribs. There is a great need of high-fidelity PIV flow field data in the inter-rib space for an angled ribbed channel which can be used for CFD validation, especially for LES. The current study provides benchmarking flow field data in the inter-rib space in a square channel with 45° ribs using stereoscopic PIV technique. Besides the experiments, numerical studies were also conducted by using LES and different RANS models. The LES results show an excellent prediction capability for aerothermal behavior in such channels. However, the prediction capability of RANS models is found to be inconsistent for different rib configurations and flow conditions

    Heat removal in axial flow high pressure gas turbine

    Get PDF
    The demand for high power in aircraft gas turbine engines as well as industrial gas turbine prime mover promotes increasing the turbine entry temperature, the mass flow rate and the overall pressure ratio. High turbine entry temperature is however the most convenient way to increase the thrust without requiring a large change in the engine size. This research is focused on improving the internal cooling of high pressure turbine blade by investigating a range of solutions that can contribute to the more effective removal of heat when compared with existing configuration. The role played by the shape of the internal blade passages is investigated with numerical methods. In addition, the application of mist air as a means of enhanced heat removal is studied. The research covers three main area of investigation. The first one is concerned with the supply of mist on to the coolant flow as a mean to enhancing heat transfer. The second area of investigation is the manipulation of the secondary flow through cross-section variation as a means to augment heat transfer. Lastly a combination of a number of geometrical features in the passage is investigated. A promising technique to significantly improve heat transfer is to inject liquid droplets into the coolant flow. The droplets which will evaporate after travelling a certain distance, act as a cooling sink which consequently promote added heat removal. Due to the promising results of mist cooling in the literature, this research investigated its effect on a roughened cooling passage with five levels of mist mass percentages. In order to validate the numerical model, two stages were carried out. First, one single-phase flow case was validated against experimental results available in the open literature. Analysing the effect of the rotational force, on both flow physics and heat transfer, on the ribbed channel was the main concern of this investigation. Furthermore, the computational results using mist injection were also validated against the experimental results available in the literature. Injection of mist in the coolant flow helped achieve up to a 300% increase in the average flow temperature of the stream, therefore in extracting significantly more heat from the wall. The Nusselt number increased by 97% for the rotating leading edge at 5% mist injection. In the case of air only, the heat transfers decrease in the second passage, while in the mist case, the heat transfer tends to increase in the second passage. Heat transfer increases quasi linearly with the increase of the mist percentage when there is no rotation. However, in the presence of rotation, the heat transfers increase with an increase in mist content up to 4%, thereafter the heat transfer whilst still rising does so more gradually. The second part of this research studies the effect of non-uniform cross- section on the secondary flow and heat transfer in order to identify a preferential design for the blade cooling internal passage. Four different cross-sections were investigated. All cases start with square cross-section which then change all the way until it reaches the 180 degree turn before it changes back to square cross-section at the outlet. All cases were simulated at four different speeds. At low speeds the rectangle and trapezoidal cross-section achieved high heat transfer. At high speed the pentagonal and rectangular cross-sections achieved high heat transfer. Pressure loss is accounted for while making use of the thermal performance factor parameter which accounts for both heat transfer and pressure loss. The pentagonal cross-section showed high potential in terms of the thermal performance factor with a value over 0.8 and higher by 33% when compared to the rectangular case. In the final section multiple enhancement techniques are combined in the sudden expansion case, such as, ribs, slots and ribbed slot. The maximum heat enhancement is achieved once all previous techniques are used together. Under these circumstances the Nusselt number increased by 60% in the proposed new design

    THERMAL EVALUATION OF ADVANCED LEADING EDGE FOR ROTATING GAS TURBINE BLADE: NUMERICAL AND EXPERIMENTAL INVESTIGATIONS

    Get PDF
    Gas turbine engines play a vital role in our life. Our power demand is significantly and continuously growing. One approach to improve thermal efficiency in gas turbine engines requires a higher turbine inlet gas temperature. Advanced gas turbine engines operate at high temperatures, around 2000 K. Since operating at high temperatures may compromise the blade structure integrity, different cooling systems are used in a turbine blades. One of the most efficient cooling techniques is impingement cooling, mostly used in the leading edge. The leading edge experiences the highest temperature in the blade exposed to the hottest gas. Researchers studied different factors over the years to identify and optimize jet impingement on the leading edge of the blade. Nevertheless, publications on jets impingement under rotation are limited in the public literature. Hence, the objective of this study is to evaluate blade cooling via jet impingement on a rotating semi-circular internal channel. The study is initially carried out numerically and experimentally for validation purpose. After validation, a parametric numerical model is developed to understand the effect of internal jets impingement on a rotating leading edge. By comparing the experimental results and the numerical results, all features of the temperature distribution over the target surface are precisely captured. A good agreement between the numerical analysis and the experimental measurements has been established. The parametric numerical model is used to test higher jet Reynolds numbers, varying between 7,500 to 30,000, and a higher rotating speed, ranging from 0 to 750 rpm. The results show that jets impingement with high Reynolds numbers is an efficient method of cooling a rotating leading edge. The jets impingement cooling performance is strongly influenced by the individual jet location, the crossflow from other jets, and the blade rotation speed. The effect of rotation is diminished at high jet Reynolds numbers. The cooling performance improves as jet Reynolds number increases and as rotating speed decreases

    Enhancing PV Panel Convective Cooling Using A Trip Wire

    Get PDF
    The current study focuses on the cooling of photovoltaic panels by utilizing a two-dimensional bluff body. A bluff body placed on the surface of a flat plate acts as a vortex generator in the near-wake, and a turbulence generator in the far-wake. As a result, the boundary layer over the flat plate becomes turbulent and conducive to heat transfer from the plate. As an exploratory experiment, a circular tripwire was used to augment the fluid turbulence over a flat plate. The measured flow parameters showed good potential for heat transfer augmentation. The second experiment measured heat transfer and flow with circular, square and diamond-shaped tripwires placed on a smooth plate. The experiments were performed at two Reynolds numbers (Red) based on the freestream velocity and diameter (d) of the tripwire. The heat transfer rate of the square and diamond-shaped tripwires was improved over a large downstream region. The peak normalized Nusselt number (Nu/Nuo) of the diamond-shaped tripwire was observed to be around 1.4, and that of the square tripwire was around 1.2. The third experiment investigated the effect of introducing a gap (G) between the top of the smooth plate and the bottom of a diamond-shaped tripwire. Heat transfer and flow parameters for six G/d ratios were measured. When the tripwire was placed on a smooth surface, the flow structure of a smooth plate downstream of the tripwire (i.e., flow separation and reattachment) had a significant impact on heat transfer. When a gap was introduced between the smooth plate and tripwire, the von Kármán vortices shed by the tripwire interacted with the smooth plate, improving heat transfer. The turbulence produced by the tripwires, especially near the plate surface, significantly improved the Nusselt number in the far-wake. Wall-normal velocity is also an important factor in improving the heat transfer rate

    Liquid crystal thermography for the thermal analysis of gas turbine blades internal cooling systems

    Get PDF
    The present work focus on the analysis of the transient liquid crystal thermography, which is employed to accomplish spatially resolved heat transfer performance on cooling channel of gas turbine blades. This methodology has already been implemented to its early stage in the rotating channel test facility of the Turbomachinery and Energy Systems Laboratory of the University of Udine; however, several aspects are still unsettled. Therefore, the main objectives of this thesis is to address the accuracy and validation of the transient thermography technique with the particular approach developed at the University of Udine. With these aims, transient thermography tests are carried out in a ribbed cooling channel on both static and rotating conditions. Even if a very common channel geometry has been chosen as a study case, no reliable experimental data were found in the open literature for validation purposes. In order to overcome this lack, the heat transfer data necessary to perform the comparison are achieved with the better-established liquid crystal thermography in steady-state approach. This work addresses further development and improvement of the test facility to make possible the implementation of the steady-state methodology. Moreover, a complex iterative numerical procedure is set up to estimate the heat losses that are the major cause of the lack of accuracy in the steady-state thermography measurements. Part of the work was also dedicated to the definition of the best calibration methodology to take when liquid crystals are exploited as temperature indicators in transient thermography; especially, when liquid crystals with activation temperatures below ambient one are used, as in the present case. The results clearly show that the temperature evolution approach must be preferred to the previously used calibration method (gradient temperature approach). The results for all the rotation conditions provided by the two experimental approaches are in good agreement, representing the evidence of the validation of the transient thermography. Nevertheless, this work suggests a possible method to estimate the uncertainty of the heat transfer coefficient values in transient experimental approach, and this is done by a sensitivity analysis to the variation of the most important experimental parameters. Furthermore, the influence of two uneven channel wall heating conditions on the local heat transfer distribution is investigated by means of the steady-state technique. The results show that the uneven thermal conditions have negligible impact on the stationary case, but they significantly affect the heat transfer when the rotation takes place. This can be due to the different buoyancy effects that in turns affects the secondary flow structures, and consequently, the local heat transfer. Anyway, additional investigations are required to better understand the reasons why of this behaviour

    Computational Heat Transfer and Fluid Mechanics

    Get PDF
    With the advances in high-speed computer technology, complex heat transfer and fluid flow problems can be solved computationally with high accuracy. Computational modeling techniques have found a wide range of applications in diverse fields of mechanical, aerospace, energy, environmental engineering, as well as numerous industrial systems. Computational modeling has also been used extensively for performance optimization of a variety of engineering designs. The purpose of this book is to present recent advances, as well as up-to-date progress in all areas of innovative computational heat transfer and fluid mechanics, including both fundamental and practical applications. The scope of the present book includes single and multiphase flows, laminar and turbulent flows, heat and mass transfer, energy storage, heat exchangers, respiratory flows and heat transfer, biomedical applications, porous media, and optimization. In addition, this book provides guidelines for engineers and researchers in computational modeling and simulations in fluid mechanics and heat transfer

    Improving Flat Plate Heat Transfer Using Flexible Rectangular Strips

    Get PDF
    Many engineering systems involve proper transfer of heat to operate. As such, augmenting the heat transfer rate can lead to performance improvement of systems such as heat exchangers and solar photovoltaics panels. Among the many existing and studied heat transfer enhancement techniques, a well-designed passive turbulence generator is a simple and potent approach to augmenting convective heat transfer. Two of the most recognized passive convective heat enhancers are wings and winglets. Their potency is attributed to the long-lasting induced longitudinal vortices which are effective in scooping and mixing hot and cold fluids. Somewhat less studied are flexible turbulence generators, which could further the heat transfer enhancement compared to their rigid counterpart. In the current study, the flexible rectangular strips are proposed, marrying the long-lasting vortex streets with the periodic oscillation, to maximize heat convection. This study was conducted in a closed-looped wind tunnel with 76 cm square cross-section. The effects of flexible strips on the turbulent flow characteristics and the resulting convective heat transfer enhancement from a heated flat surface are detailed in four papers which are presented as Chapters 3, 4, 5 and 6. In Chapter 3, the effect of the thickness of the strip is detailed. The 12.7 mm wide and 38.1 mm tall rectangular strip was cut from an aluminum sheet with thickness of 0.1, 0.2 and 0.25 mm. The incoming wind velocity was maintained at around 10 m/s, giving a Reynolds number based on the strip width of 8500. It is observed that the thinnest 0.1 mm strip could induce a larger downwash velocity and a stronger Strouhal fluctuation at 3H (strip height) downstream, leading to a better heat transfer enhancement. The peak of the normalized Nusselt number (Nu/Nu0) at 3H downstream of the 0.1 mm strip was around 1.67, approximately 0.1 larger than that of the 0.25 mm strip. In Chapter 4, the height effect of the strip is disclosed. The strip was 12.7 mm wide and 0.1 mm thick, with a height of 25.4 mm, 38.1 mm and 50.8 mm. The Reynolds number in this chapter was also fixed at around 8500, based on the strip width and the freestream velocity. It was found that the shortest, 25.4 mm strip could induce the closest-to-wall swirling vortices, and the largest near-surface downwash velocity toward the heated surface. Thus, the largest heat transfer augmentation was observed. At 9W (strip width) downstream, the 25.4 mm-strip provided the Nu/Nu0 peak of around 1.76, 0.26 larger than that associated with the tallest, 50.8 mm-strip. In Chapter 5, the effect of the transversal space of a pair of strips is expounded. A pair of 0.1 mm thick, 12.7 mm wide, and 25.4 mm tall aluminum rectangular flexible strips was placed side-by-side with a spacing of 1W (strip width), 2W and 3W. The Reynolds number based on the strip width was around 8500. The results showed that the 1W-spaced strip pair induced the strongest vortex-vortex interaction, the largest downwash velocity, and the most intense turbulence fluctuation. These resulted in the most effective heat convection. At Y=0 (middle of the strip pair) and X=9W, the largest Nu/Nu0 value of around 1.50 was identified when using the 1W-spaced strip pair. This was approximately 0.24 and 0.33 larger than that of the 2W- and 3W-spaced strip pairs. Chapter 6 presents the effect of freestream turbulence on the flat plate heat convection enhancement with a 12.7 mm wide, 25.4 mm tall and 0.1 mm thick flexible strip. A 6 mm thick sharp-edged orificed perforated plate (OPP) with holes of 38.1 mm diameter (D) was placed at 10D, 13D and 16D upstream of the strip to generate the desirable levels of freestream turbulence. The corresponding streamwise freestream turbulence intensity at the strip was around 11%, 9% and 7%. The Reynolds number based on the strip width and freestream velocity was approximately 6000. The freestream turbulence was found to diminish the effect of flexible strip in terms of the relative heat transfer enhancement (Nu/Nu0). This is due to the significant increase of Nu0 with the increasing freestream turbulence. In other words, the flexible strip could always improve the heat transfer, and the relative improvement is greatest for the largely laminar freestream case in the absence of the OPP. Chapter 7 summarizes the effect of all the parameters in previous chapters on the convective heat transfer enhancement. The results show that the freestream turbulence intensity (Tu) had the most significant effect in augmenting the averaged Nu/Nu0, and the local Nu/Nu0 correlated best with the local ke. The maximal averaged Nu/Nu0 over 23W downstream, within ±1 and ±4 strip widths cross-stream was found for Tu=7% case and Tu=11% case, respectively. Conclusions are drawn and recommendations are provided in Chapter 8
    corecore