16,039 research outputs found

    Introduction to Astronomy with Radioactivity

    Full text link
    In the late nineteenth century, Antoine Henri Becquerel discovered radioactivity and thus the physics of weak interactions, well before atomic and quantum physics was known. The different types of radioactive decay, alpha, beta, and gamma decay, all are different types of interactions causing the same, spontaneous, and time-independent decay of an unstable nucleus into another and more stable nucleus. Nuclear reactions in cosmic sites re-arrange the basic constituents of atomic nuclei (neutrons and protons) among the different configurations which are allowed by Nature, thus producing radioactive isotopes as a by-product. Throughout cosmic history, such reactions occur in different sites, and lead to rearrangements of the relative abundances of cosmic nuclei, a process called cosmic chemical evolution, which can be studied through the observations of radioactivity. The special role of radioactivity in such studies is contributed by the intrinsic decay of such material after it has been produced in cosmic sites. This brings in a new aspect, the clock of the radioactive decay. Observational studies of cosmic radioactivities intrinsically obtain isotopic information which are at the heart of cosmic nucleosynthesis. They are best performed by precision mass spectroscopy in terrestrial laboratories, which has been combined with sophisticated radiochemistry to extract meteoritic components originating from outside the solar system, and by spectroscopy of characteristic gamma-ray lines emitted upon radioactive decay in cosmic environments and measured with space-based telescopes. This book describes where and how specific astronomical messages from cosmic radioactivity help to complement the studies of cosmic nucleosynthesis sites anad of cosmic chemical evolution.Comment: 20 pages, 9 figure

    Radioactive decays at limits of nuclear stability

    Full text link
    The last decades brought an impressive progress in synthesizing and studying properties of nuclides located very far from the beta stability line. Among the most fundamental properties of such exotic nuclides, usually established first, is the half-life, possible radioactive decay modes, and their relative probabilities. When approaching limits of nuclear stability, new decay modes set in. First, beta decays become accompanied by emission of nucleons from highly excited states of daughter nuclei. Second, when the nucleon separation energy becomes negative, nucleons start to be emitted from the ground state. Here, we present a review of the decay modes occurring close to the limits of stability. The experimental methods used to produce, identify and detect new species and their radiation are discussed. The current theoretical understanding of these decay processes is overviewed. The theoretical description of the most recently discovered and most complex radioactive process - the two-proton radioactivity - is discussed in more detail.Comment: Review, 68 pages, 39 figure

    Majorana and the quasi-stationary states in Nuclear Physics

    Get PDF
    A complete theoretical model describing artificial disintegration of nuclei by bombardment with alpha-particles, developed by Majorana as early as in 1930, is discussed in detail alongside the basic experimental evidences that motivated it. By following the quantum dynamics of a state resulting from the superposition of a discrete state with a continuum one, whose interaction is described by a given potential term, Majorana obtained (among the other predictions) the explicit expression for the integrated cross section of the nuclear process, which is the direct measurable quantity of interest in the experiments. Though this is the first application of the concept of quasi-stationary states to a Nuclear Physics problem, it seems also that the unpublished Majorana's work anticipates by several years the related seminal paper by Fano on Atomic Physics.Comment: latex, amsart, 13 page

    Early Results on Radioactive Background Characterization for Sanford Laboratory and DUSEL Experiments

    Full text link
    Measuring external sources of background for a deep underground laboratory at the Homestake Mine is an important step for the planned low-background experiments. The naturally occurring γ\gamma-ray fluxes at different levels in the Homestake Mine are studied using NaI detectors and Monte Carlo simulations. A simple algorithm is developed to convert the measured γ\gamma-ray rates into γ\gamma-ray fluxes. A good agreement between the measured and simulated γ\gamma-ray fluxes is achieved with the knowledge of the chemical composition and radioactivity levels in the rock. The neutron fluxes and γ\gamma-ray fluxes are predicted by Monte Carlo simulations for different levels including inaccessible levels that are under construction for the planned low background experiments.Comment: 16 pages, 2 figures, and 9 table

    Global α\alpha-decay study based on the mass table of the relativistic continuum Hartree-Bogoliubov theory

    Full text link
    The α\alpha-decay energies (QαQ_\alpha) are systematically investigated with the nuclear masses for 10Z12010 \leq Z \leq 120 isotopes obtained by the relativistic continuum Hartree-Bogoliubov (RCHB) theory with the covariant density functional PC-PK1, and compared with available experimental values. It is found that the α\alpha-decay energies deduced from the RCHB results present similar pattern as those from available experiments. Owing to the large predicted QαQ_\alpha values (\geq 4 MeV), many undiscovered heavy nuclei in the proton-rich side and super-heavy nuclei may have large possibilities for α\alpha-decay. The influence of nuclear shell structure on α\alpha-decay energies is also analysed.Comment: 7 pages, 4 figures. arXiv admin note: text overlap with arXiv:1309.3987 by other author
    corecore