947,788 research outputs found

    From Hadrons to Nuclei: Crossing the Border

    Get PDF
    The study of nuclei predates by many years the theory of quantum chromodynamics. More recently, effective field theories have been used in nuclear physics to ``cross the border'' from QCD to a nuclear theory. We are now entering the second decade of efforts to develop a perturbative theory of nuclear interactions using effective field theory. This work describes the current status of these efforts.Comment: 141 pages, 58 figs, latex. To appear in the Boris Ioffe Festschrift, ed. by M. Shifman, World Scientifi

    Chiral nucleon-nucleon forces in nuclear structure calculations

    Get PDF
    Realistic nuclear potentials, derived within chiral perturbation theory, are a major breakthrough in modern nuclear structure theory, since they provide a direct link between nuclear physics and its underlying theory, namely the QCD. As a matter of fact, chiral potentials are tailored on the low-energy regime of nuclear structure physics, and chiral perturbation theory provides on the same footing two-nucleon forces as well as many-body ones. This feature fits well with modern advances in ab-initio methods and realistic shell-model. Here, we will review recent nuclear structure calculations, based on realistic chiral potentials, for both finite nuclei and infinite nuclear matter.Comment: 10 pages, 8 figures, plenary talk presented at "Nucleus-Nucleus 2015" Conference, 21-26 June 2015, Catania, to be published in the "Conference Proceedings" Series of the Italian Physical Societ

    QED theory of the nuclear recoil effect in atoms

    Get PDF
    The quantum electrodynamic theory of the nuclear recoil effect in atoms to all orders in \alpha Z is formulated. The nuclear recoil corrections for atoms with one and two electrons over closed shells are considered in detail. The problem of the composite nuclear structure in the theory of the nuclear recoil effect is discussed.Comment: 20 pages, 6 figures, Late

    Hyperons in nuclear matter from SU(3) chiral effective field theory

    Full text link
    Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Lambda and Sigma hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Sigma-nuclear potential and a weak Lambda-nuclear spin-orbit force.Comment: 13 pages, 10 figures, 5 tables; v2: published version, minor change

    Covariant Effective Field Theory for Nuclear Structure and Nuclear Currents

    Full text link
    Recent progress in Lorentz-covariant quantum field theories of the nuclear many-body problem (quantum hadrodynamics or QHD) is discussed. The effective field theory studied here contains nucleons, pions, isoscalar scalar (\sigma) and vector (\omega) fields, and isovector vector (\rho) fields. The theory exhibits a nonlinear realization of spontaneously broken SU(2)_L \times SU(2)_R chiral symmetry and has three desirable features: it uses the same degrees of freedom to describe the nuclear currents and the strong-interaction dynamics, it satisfies the symmetries of the underlying theory of QCD, and its parameters can be calibrated using strong-interaction phenomena, like hadron scattering or the empirical properties of finite nuclei. Moreover, it has recently been verified that for normal nuclear systems, it is possible to expand the effective Lagrangian systematically in powers of the meson fields (and their derivatives) and to truncate the expansion reliably after the first few orders. Using a mean-field version of the energy functional, accurate quantitative results are obtained for the bulk and single-particle properties of medium- and heavy-mass nuclei. The importance of modern perspectives in effective field theory and density functional theory for understanding these successes of QHD is emphasized. The inclusion of hadronic electromagnetic structure and of nonanalytic terms in the energy functional is also considered briefly. As a further application, weak-interaction currents are studied in the QHD framework. The axial-vector current, evaluated through the leading order in the field expansion, satisfies both PCAC and the Goldberger--Treiman relation, and the corresponding vector and axial-vector charges satisfy the familiar chiral charge algebra to all orders in the pion field.Comment: 32 pages, 9 figures, LaTeX2e with svmult.cls and svmultphys.clo; invited lecture at 307. WE-Heraeus-Seminar, "Relativistic Structure Models for the Physics of Radioactive Nuclear Beams," 5/12-16/2003, Bad Honnef, Germany. Reference list put into correct order; four typos fixe
    corecore