7,523 research outputs found

    Targeting crosstalk between Nrf-2, NF-ÎşB and androgen receptor signaling in prostate cancer

    Get PDF
    Oxidative stress, inflammation and androgen receptor (AR) signaling play a pivotal role in the initiation, development and progression of prostate cancer (PCa). Numerous papers in the literature have documented the interconnection between oxidative stress and inflammation; and how antioxidants can combat the inflammation. It has been shown in the literature that both oxidative stress and inflammation regulate AR, the key receptor involved in the transition of PCa to castration resistant prostate cancer (CRPC). In this review, we discuss about the importance of targeting Nrf-2-antioxidant signaling, NF-κB inflammatory response and AR signaling in PCa. Finally, we discuss about the crosstalk between these three critical pathways as well as how the anti-inflammatory antioxidant phytochemicals like sulforaphane (SFN) and curcumin (CUR), which can also target AR, can be ideal candidates in the chemoprevention of PCa

    Sulforaphane induces adipocyte browning and promotes glucose and lipid utilization

    Get PDF
    Scope: Obesity is closely related to the imbalance of white adipose tissue storing excess calories, and brown adipose tissue dissipating energy to produce heat in mammals. Recent studies revealed that acquisition of brown characteristics by white adipocytes, termed “browning,” may positively contribute to cellular bioenergetics and metabolism homeostasis. The goal was to investigate the putative effects of natural antioxidant sulforaphane (1-isothiocyanate-4-methyl-sulfonyl butane; SFN) on browning of white adipocytes. Methods and Results: 3T3-L1 mature white adipocytes were treated with SFN for 48 h, and then the mitochondrial content, function, and energy utilization were assessed. SFN was found to induce 3T3-L1 adipocytes browning based on the increased mitochondrial content and activity of respiratory chain enzymes, whereas the mechanism involved the upregulation of nuclear factor E2-related factor 2/ sirtuin1/ peroxisome proliferator-activated receptor gamma coactivator 1 alpha signaling. SFN enhanced uncoupling protein 1 expression, a marker for brown adipocyte, leading to the decrease in cellular ATP. SFN also enhanced glucose uptake and oxidative utilization, lipolysis and fatty acid oxidation in 3T3-L1 adipocytes. Conclusion: SFN-induced browning of white adipocytes enhanced the utilization of cellular fuel, and the application of SFN is a promising strategy to combat obesity and obesity-related metabolic disorder

    The dual role of curcumin and ferulic acid in counteracting chemoresistance and cisplatin-induced ototoxicity.

    Get PDF
    Platinum-based agents, such as cisplatin, form the mainstay of currently used chemotherapeutic regimens for several malignancies; however, the main limitations are chemoresistance and ototoxic side effects. In this study we used two different polyphenols, curcumin and ferulic acid as adjuvant chemotherapeutics evaluating (1) in vivo their antioxidant effects in protecting against cisplatin ototoxicity and (2) in vitro the transcription factors involved in tumor progression and cisplatin resistance. We reported that both polyphenols show antioxidant and oto-protective activity in the cochlea by up-regulating Nrf-2/HO-1 pathway and downregulating p53 phosphorylation. However, only curcumin is able to influence inflammatory pathways counteracting NF-\u3baB activation. In human cancer cells, curcumin converts the anti-oxidant effect into a pro-oxidant and anti-inflammatory one. Curcumin exerts permissive and chemosensitive properties by targeting the cisplatin chemoresistant factors Nrf-2, NF-\u3baB and STAT-3 phosphorylation. Ferulic acid shows a biphasic response: it is pro-oxidant at lower concentrations and anti-oxidant at higher concentrations promoting chemoresistance. Thus, polyphenols, mainly curcumin, targeting ROS-modulated pathways may be a promising tool for cancer therapy. Thanks to their biphasic activity of antioxidant in normal cells undergoing stressful conditions and pro-oxidant in cancer cells, these polyphenols probably engage an interplay among the key factors Nrf-2, NF-\u3baB, STAT-3 and p53

    Atorvastatin Represses the Angiotensin 2-Induced Oxidative Stress and Inflammatory Response in Dendritic Cells via the PI3K/Akt/Nrf 2 Pathway

    Get PDF
    Dendritic cells (DCs), which are highly proficient antigen-presenting cells, play a complex role in both the initiation and progression of atherosclerosis. We tested the hypothesis that the anti-inflammatory and antioxidant effects of atorvastatin may be partly mediated by the phosphatidylinositol 3-kinase/protein kinase B/transcription factor nuclear factor-erythroid 2-related factor 2 (PI3K/Akt/Nrf 2) pathway via the attenuation of DC maturation, thus reducing the inflammatory and oxidative stress responses. This study showed that angiotensin 2 (Ang 2) induced the maturation of DCs, stimulated CD83, CD40, CD80, and CD86 expression, and increased the secretion of IL-12p70, IL-6, and TNF-α. These effects were suppressed by atorvastatin. Atorvastatin also lowered the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), counteracting their initial increases in response to Ang 2 stimulation. Atorvastatin activated Nrf 2 via the PI3K/Akt pathway and thereby promoted Nrf 2 translocation from the cytoplasm to the nucleus in bone marrow-derived dendritic cells (BMDCs), a process that was reversed by the PI3K inhibitor LY294002. Therefore, the regulation of Nrf 2 expression by the PI3K/Akt pathway plays an important role in the regulation of the statin-mediated antioxidant and anti-inflammatory responses in DCs

    Serotonin signaling through the 5-HT1B receptor and NADPH oxidase 1 in pulmonary arterial hypertension

    Get PDF
    Objective: Serotonin can induce human pulmonary artery smooth muscle cell (hPASMC) proliferation through reactive oxygen species (ROS), influencing the development of pulmonary arterial hypertension (PAH). We hypothesise that in PASMCs, serotonin induces oxidative stress through NADPH-oxidase-derived ROS generation and reduced Nrf-2 anti-oxidant systems, promoting vascular injury. Approach and Results: HPASMCs from controls and PAH patients, and PASMCs from Nox1-/- mice, were stimulated with serotonin in the absence/presence of inhibitors of Src kinase, the 5-HT1B receptor and NADPH oxidase 1 (Nox1). Markers of fibrosis were also determined. The pathophysiological significance of our findings was examined in vivo in serotonin transporter overexpressing (SERT+) female mice, a model of pulmonary hypertension (PH). We confirmed serotonin increased superoxide and H2O2 production in these cells. For the first time, we show that serotonin increased oxidized protein tyrosine phosphatases and peroxiredoxin-SO3H and decreased Nrf-2 and catalase activity in hPASMCs. ROS generation was exaggerated, and dependent on c-Src, 5-HT1B receptor and the serotonin transporter in PAH-hPASMCs. Proliferation and extracellular matrix remodeling were exaggerated in PAH-hPASMCs and dependent on 5-HT1B receptor signaling and Nox1, confirmed in PASMCs from Nox1-/- mice. In SERT+ mice, SB216641, a 5-HT1B receptor antagonist, prevented development of PH in a ROS-dependent manner. Conclusions: Serotonin can induce c-Src-regulated Nox1-induced ROS and Nrf-2 dysregulation, contributing to increased post-translational oxidative modification of proteins, activation of redox-sensitive signaling pathways in hPASMCs; associated with mitogenic responses. 5-HT1B receptors contribute to experimental PH by inducing lung ROS production. Our results suggest 5-HT1B receptor-dependent c-Src-Nox1-pathways contribute to vascular remodeling in PAH

    Anti-oxidant and anti-inflammatory activity of ketogenic diet. New perspectives for neuroprotection in alzheimer’s disease

    Get PDF
    The ketogenic diet, originally developed for the treatment of epilepsy in non-responder children, is spreading to be used in the treatment of many diseases, including Alzheimer’s disease. The main activity of the ketogenic diet has been related to improved mitochondrial function and decreased oxidative stress. B-Hydroxybutyrate, the most studied ketone body, has been shown to reduce the production of reactive oxygen species (ROS), improving mitochondrial respiration: it stimulates the cellular endogenous antioxidant system with the activation of nuclear factor erythroid-derived 2-related factor 2 (Nrf2), it modulates the ratio between the oxidized and reduced forms of nicotinamide adenine dinucleotide (NAD+/NADH) and it increases the efficiency of electron transport chain through the expression of uncoupling proteins. Furthermore, the ketogenic diet performs anti-inflammatory activity by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) activation and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome as well as inhibiting histone deacetylases (HDACs), improving memory encoding. The underlying mechanisms and the perspectives for the treatment of Alzheimer’s disease are discussed

    Argon protects against hypoxic-ischemic brain injury in neonatal rats through activation of Nuclear factor (erythroid-derived 2)-like 2

    Get PDF
    Perinatal hypoxic ischaemic encephalopathy (HIE) has a high mortality rate with neuropsychological impairment. This study investigated the neuroprotective effects of argon against neonatal hypoxic-ischaemic brain injury. In vitro cortical neuronal cell cultures derived from rat foetuses were subjected to an oxygen and glucose deprivation (OGD) challenge for 90 minutes and then exposed to 70% argon or nitrogen with 5% carbon dioxide and balanced with oxygen for 2 hours. In vivo, seven-day-old rats were subjected to unilateral common carotid artery ligation followed by hypoxic (8% oxygen balanced with nitrogen) insult for 90 minutes. They were exposed to 70% argon or nitrogen balanced with oxygen for 2 hours. In vitro, argon treatment of cortical neuronal cultures resulted in a significant increase of p-mTOR and Nuclear factor (erythroid-derived 2)-like 2(Nrf2) and protection against OGD challenge. Inhibition of m-TOR through Rapamycin or Nrf2 through siRNA abolished argon-mediated cyto-protection. In vivo, argon exposure significantly enhanced Nrf2 and its down-stream effector NAD(P)H Dehydrogenase, Quinone 1(NQO1) and superoxide dismutase 1(SOD1). Oxidative stress, neuroinflammation and neuronal cell death were significantly decreased and brain infarction was markedly reduced. Blocking PI-3K through wortmannin or ERK1/2 through U0126 attenuated argon-mediated neuroprotection. These data provide a new molecular mechanism for the potential application of Argon as a neuroprotectant in HIE

    Measurement and clinical significance of biomarkers of oxidative stress in humans

    Get PDF
    Oxidative stress is the result of the imbalance between reactive oxygen species (ROS) formation and enzymatic and nonenzymatic antioxidants. Biomarkers of oxidative stress are relevant in the evaluation of the disease status and of the health-enhancing effects of antioxidants. We aim to discuss the major methodological bias of methods used for the evaluation of oxidative stress in humans. There is a lack of consensus concerning the validation, standardization, and reproducibility of methods for the measurement of the following: (1) ROS in leukocytes and platelets by flow cytometry, (2) markers based on ROS-induced modifications of lipids, DNA, and proteins, (3) enzymatic players of redox status, and (4) total antioxidant capacity of human body fluids. It has been suggested that the bias of each method could be overcome by using indexes of oxidative stress that include more than one marker. However, the choice of the markers considered in the global index should be dictated by the aim of the study and its design, as well as by the clinical relevance in the selected subjects. In conclusion, the clinical significance of biomarkers of oxidative stress in humans must come from a critical analysis of the markers that should give an overall index of redox status in particular conditions

    Punicalagin alleviates brain injury and inflammatory responses, and regulates HO-1/Nrf-2/ARE signaling in rats after experimental intracerebral haemorrhage

    Get PDF
    Purpose: To investigate the effect of punicalagin, an ellagitannin present in pomegranates, on intracerebral haemorrhage (ICH)-induced inflammatory responses and oxidative stress, and also unravel the underlying mechanism(s) of action. Methods: Collagenase type IV (0.2 U) was used to induce ICH in adult male Sprague-Dawley rats. Punicalagin was given to the rats at doses of 25, 50, and 75 mg/kg body weight via oral gavage for 15 days before ICH induction. The animals were sacrificed 24h following induction of ICH, and their brains were excised immediately and used for analysis. Histological changes were determined with Haematoxylin and Eosin (H&E) staining. Permeability to blood-brain barrier (BBB) was determined by quantifying the extent of extravasation of Evan Blue (EB). Protein expressions of HO-1/Nrf-2/ARE and NF-κB signaling were assayed using immunoblotting and RT-PCR. Levels of reactive oxygen species (ROS) and serum levels of cytokines were also determined. Results: Punicalagin treatment reduced inflammatory cell infiltration and cell damage, improved brain tissue architecture and BBB integrity. The punicalagin treatment increased the activities of antioxidant enzymes, and enhanced antioxidant status via activation of Nrf-2/ARE/HO-1 signaling pathway (p < 0.05). The treatment upregulated the expressions of HO-1 to 174 %, relative to 127 % in ICH control rats. Furthermore, it enhanced NF-κB levels and reversed the ICH injury-induced upregulations of IL-6, IL-18 and IL-1β. Conclusion: These findings indicate that punicalagin exerts neuroprotective effect in rats after experimental ICH through regulation of theHO-1/Nrf-2/ARE signaling pathway. Thus, punicalagin has therapeutic potential for ICH. Keywords: Brain injury, Haemoxygenase-1, Intracerebral haemorrhage, Inflammatory responses, Nrf2/ARE signalling, Punicalagi
    • …
    corecore