1,008 research outputs found

    Survey of vector-borne agents in feral cats and first report of Babesia gibsoni in cats on St Kitts, West Indies

    Get PDF
    Background: As there is little data on vector-borne diseases of cats in the Caribbean region and even around the world, we tested feral cats from St Kitts by PCR to detect infections with Babesia, Ehrlichia and spotted fever group Rickettsia (SFGR) and surveyed them for antibodies to Rickettsia rickettsii and Ehrlichia canis. Results: Whole blood was collected from apparently healthy feral cats during spay/ neuter campaigns on St Kitts in 2011 (N = 68) and 2014 (N = 52). Sera from the 52 cats from 2014 were used to detect antibodies to Ehrlichia canis and Rickettsia rickettsii using indirect fluorescent antibody tests and DNA extracted from whole blood of a total of 119 cats (68 from 2011, and 51 from 2014) was used for PCRs for Babesia, Ehrlichia and Rickettsia. We could not amplify DNA of SFG Rickettsia in any of the samples but found DNA of E. canis in 5% (6/119), Babesia vogeli in 13% (15/119), Babesia gibsoni in 4% (5/119), mixed infections with B. gibsoni and B. vogeli in 3% (3/119), and a poorly characterized Babesia sp. in 1% (1/119). Overall, 10% of the 52 cats we tested by IFA for E. canis were positive while 42% we tested by indirect fluorescent antibody (IFA) for R. rickettsii antigens were positive. Conclusions: Our study provides the first evidence that cats can be infected with B. gibsoni and also indicates that cats in the Caribbean may be commonly exposed to other vector-borne agents including SFGR, E. canis and B. vogeli. Animal health workers should be alerted to the possibility of clinical infections in their patients while public health workers should be alerted to the possibility that zoonotic SFGR are likely circulating in the region

    Genetic characterization of flea-derived Bartonella species from native animals in Australia suggests host-parasite co-evolution

    Get PDF
    Fleas are important arthropod vectors for a variety of diseases in veterinary and human medicine, and bacteria belonging to the genus Bartonella are among the organisms most commonly transmitted by these ectoparasites. Recently, a number of novel Bartonella species and novel species candidates have been reported in marsupial fleas in Australia. In the present study the genetic diversity of marsupial fleas was investigated; 10 species of fleas were collected from seven different marsupial and placental mammal hosts in Western Australia including woylies (Bettongia penicillata), western barred bandicoots (Perameles bougainville), mardos (Antechinus flavipes), bush rats (Rattus fuscipes), red foxes (Vulpes vulpes), feral cats (Felis catus) and rabbits (Oryctolagus cuniculus). PCR and sequence analysis of the cytochrome oxidase subunit I (COI) and the 18S rRNA genes from these fleas was performed. Concatenated phylogenetic analysis of the COI and 18S rRNA genes revealed a close genetic relationship between marsupial fleas, with Pygiopsylla hilli from woylies, Pygiopsylla tunneyi from western barred bandicoots and Acanthopsylla jordani from mardos, forming a separate cluster from fleas collected from the placental mammals in the same geographical area. The clustering of Bartonella species with their marsupial flea hosts suggests co-evolution of marsupial hosts, marsupial fleas and Bartonella species in Australia

    Genetic diversity, infection prevalence, and possible transmission routes of Bartonella spp. in vampire bats

    Get PDF
    Bartonella spp. are globally distributed bacteria that cause endocarditis in humans and domestic animals. Recent work has suggested bats as zoonotic reservoirs of some human Bartonella infections; however, the ecological and spatiotemporal patterns of infection in bats remain largely unknown. Here we studied the genetic diversity, prevalence of infection across seasons and years, individual risk factors, and possible transmission routes of Bartonella in populations of common vampire bats (Desmodus rotundus) in Peru and Belize, for which high infection prevalence has previously been reported. Phylogenetic analysis of the gltA gene for a subset of PCR-positive blood samples revealed sequences that were related to Bartonella described from vampire bats from Mexico, other Neotropical bat species, and streblid bat flies. Sequences associated with vampire bats clustered significantly by country but commonly spanned Central and South America, implying limited spatial structure. Stable and nonzero Bartonella prevalence between years supported endemic transmission in all sites. The odds of Bartonella infection for individual bats was unrelated to the intensity of bat flies ectoparasitism, but nearly all infected bats were infested, which precluded conclusive assessment of support for vector-borne transmission. While metagenomic sequencing found no strong evidence of Bartonella DNA in pooled bat saliva and fecal samples, we detected PCR positivity in individual saliva and feces, suggesting the potential for bacterial transmission through both direct contact (i.e., biting) and environmental (i.e., fecal) exposures. Further investigating the relative contributions of direct contact, environmental, and vector-borne transmission for bat Bartonella is an important next step to predict infection dynamics within bats and the risks of human and livestock exposures

    Bartonella Infections in Rodents and Bats in Tropics

    Get PDF

    First identification of Bartonella coopersplainsensis in wild rodents (Rattus norvegicus) in Greece

    Get PDF
    Η μελέτη αυτή ήταν μια πρώτη προσπάθεια για ανίχνευση της Bartonella sp. σε ιστούς (ήπαρ και καρδιά) πουπάρθηκαν από άγρια τρωκτικά {Rattus norvegicus) στην κεντρική Ελλάδα. Εξετάστηκαν δεκαοκτώ (18) δείγματα ήπατος και δεκαοκτώ (18) δείγματα καρδιάς, τα οποία προέρχονταν από είκοσι τρία (23) ζώα. Δυο (2) δείγματα ήπατος βρέθηκαν θετικάενώ όλα τα δείγματα καρδιάς ήταν αρνητικά για το γονίδιο 16S-23S intergenic spacer rDNA της Bartonella sp. Η αλληλουχίατων βάσεων του DNA των θετικών δειγμάτων και η σύγκριση με τα διαθέσιμα δεδομένα της GenBank με τη χρησιμοποίησητου προγράμματος BLAST, αποκάλυψε το ίδιο είδος Bartonella και στα δύο θετικά δείγματα με 100% ομοιότητα με τηναλληλουχία των βάσεων της Bartonella coopersplainsensis. This study was a preliminary attempt to detect Bartonella sp. in tissues (liver and heart) obtained from wild rodents {Rattus norvegicus) in central Greece. Eighteen (18) liver and eighteen (18) heart samples were examined, which were obtained from twenty three (23) animals. Two (2) liver samples were found positive, while the heart samples examined were found negative for Bartonella sp. 16S-23S intergenic spacer rDNA gene by PCR. Sequencing of the positive PCR products and comparison with those available in GenBank using the BLAST program revealed the same species of Bartonella in both positive samples with 100% sequence homology to Bartonella coopersplainsensis

    Molecular detection of vector-borne bacterial pathogens in dromedary camels from Algeria

    Get PDF
    Background: In Algeria, little focus was placed on camels as hosts of tick-borne bacterial diseases. Recent studies showed a high prevalence of tick infestation in dromedaries. Transmission of various pathogenic micro organisms to camels by ticks imposes considerable economic losses to livestock and greatly impact on human and animal health. The aim of our study was to investigate the occurrence of vector-borne zoonotic bacteria in camels from Algeria. Methodology: Blood samples were collected from 80 randomly selected camels in Laghouat province, southern Algeria. The samples were screened for Anaplasma spp, Bartonella spp, Rickettsia spp and Coxiella burnetii by qPCR. All positive samples were confirmed by standard PCR followed by sequencing. Data on age, sex, tick infestation and location of the camels were analyzed using the SPSS version 17.0 and association of these with vector-borne bacterial pathogens was determined using Chi-square (χ2) test. P value lower than 0.05 wasconsidered as indicative of significance. Results: Twenty five of the 80 (31.3%) camels were positive to at least one vector-borne bacterial pathogen with Anaplasma phagocytophilum (22.5%, 18/80) being the most prevalent species, followed by Anaplasma platys (7.5%, 6/80) and Bartonella dromedarii (2.5%, 2/80). Only one camel was co-infected with two pathogens. All samples tested negative for Rickettsia spp and Coxiella burnetii. None of the factors (age, sex, tick infestation and study sites) was significantly associated with prevalence of vector-borne bacteria in the camels (p>0.05). Conclusion: The present study is the first report of anaplasmosis and bartonellosis in "Camelus dromedaries" from Algeria. Our results highlighted the need for further investigations on tickborne pathogens of camels

    High Prevalence and Genetic Heterogeneity of Rodent-Borne Bartonella Species on Heixiazi Island, China

    Get PDF
    We performed genetic analysis of Bartonella isolates from rodent populations from Heixiazi Island in northeast China. Animals were captured at four sites representing grassland and brushwood habitats in 2011 and examined for the prevalence and genetic diversity of Bartonella species, their relationship to their hosts, and geographic distribution. A high prevalence (57.7%) and a high diversity (14 unique genotypes which belonged to 8 clades) of Bartonella spp. were detected from 71 rodents comprising 5 species and 4 genera from 3 rodent families. Forty-one Bartonella isolates were recovered and identified, including B. taylorii, B. japonica, B. coopersplainsensis, B. grahamii, B. washoensis subsp. cynomysii, B. doshiae, and two novel Bartonella species, by sequencing of four genes (gltA, the 16S rRNA gene, ftsZ, and rpoB). The isolates of B. taylorii and B. grahamii were the most prevalent and exhibited genetic difference from isolates identified elsewhere. Several isolates clustered with strains from Japan and far-eastern Russia; strains isolated from the same host typically were found within the same cluster. Species descriptions are provided for Bartonella heixiaziensis sp. nov. and B. fuyuanensis sp. nov

    Upscaling the surveillance of tick-borne pathogens in the French Caribbean Islands

    Get PDF
    Despite the high burden of vector-borne disease in (sub)tropical areas, few information are available regarding the diversity of tick and tick-borne pathogens circulating in the Caribbean. Management and control of vector-borne disease require actual epidemiological data to better assess and anticipate the risk of (re)emergence of tick-borne diseases in the region. To simplify and reduce the costs of such large-scale surveys, we implemented a high-throughput microfluidic real-time PCR system suitable for the screening of the main bacterial and parasitic genera involved in tick-borne disease and potentially circulating in the area. We used the new screening tool to perform an exploratory epidemiological study on 132 adult specimens of Amblyomma variegatum and 446 of Rhipicephalus microplus collected in Guadeloupe and Martinique. Not only the system was able to detect the main pathogens of the area—Ehrlichia ruminantium, Rickettsia africae, Anaplasma marginale, Babesia bigemina and Babesia bovis—but the system also provided evidence of unsuspected microorganisms in Caribbean ticks, belonging to the Anaplasma, Ehrlichia, Borrelia and Leishmania genera. Our study demonstrated how high-throughput microfluidic real-time PCR technology can assist large-scale epidemiological studies, providing a rapid overview of tick-borne pathogen and microorganism diversity, and opening up new research perspectives for the epidemiology of tick-borne pathogens

    Potential for Tick-borne Bartonelloses

    Get PDF
    Although possible, tick transmission to a vertebrate host has not been proven

    Emerging and Re-Emerging Zoonoses of Dogs and Cats.

    Get PDF
    Since the middle of the 20th century, pets are more frequently considered as "family members" within households. However, cats and dogs still can be a source of human infection by various zoonotic pathogens. Among emerging or re-emerging zoonoses, viral diseases, such as rabies (mainly from dog pet trade or travel abroad), but also feline cowpox and newly recognized noroviruses or rotaviruses or influenza viruses can sicken our pets and be transmitted to humans. Bacterial zoonoses include bacteria transmitted by bites or scratches, such as pasteurellosis or cat scratch disease, leading to severe clinical manifestations in people because of their age or immune status and also because of our closeness, not to say intimacy, with our pets. Cutaneous contamination with methicillin-resistant Staphylococcus aureus, Leptospira spp., and/or aerosolization of bacteria causing tuberculosis or kennel cough are also emerging/re-emerging pathogens that can be transmitted by our pets, as well as gastro-intestinal pathogens such as Salmonella or Campylobacter. Parasitic and fungal pathogens, such as echinococcosis, leishmaniasis, onchocercosis, or sporotrichosis, are also re-emerging or emerging pet related zoonoses. Common sense and good personal and pet hygiene are the key elements to prevent such a risk of zoonotic infection
    corecore