225,047 research outputs found
Nonlinear field theories during homogeneous spatial dilation
The effect of a uniform dilation of space on stochastically driven nonlinear
field theories is examined. This theoretical question serves as a model problem
for examining the properties of nonlinear field theories embedded in expanding
Euclidean Friedmann-Lema\^{\i}tre-Robertson-Walker metrics in the context of
cosmology, as well as different systems in the disciplines of statistical
mechanics and condensed matter physics. Field theories are characterized by the
speed at which they propagate correlations within themselves. We show that for
linear field theories correlations stop propagating if and only if the speed at
which the space dilates is higher than the speed at which correlations
propagate. The situation is in general different for nonlinear field theories.
In this case correlations might stop propagating even if the velocity at which
space dilates is lower than the velocity at which correlations propagate. In
particular, these results imply that it is not possible to characterize the
dynamics of a nonlinear field theory during homogeneous spatial dilation {\it a
priori}. We illustrate our findings with the nonlinear Kardar-Parisi-Zhang
equation
Practically linear analogs of the Born-Infeld and other nonlinear theories
I discuss theories that describe fully nonlinear physics, while being
practically linear (PL), in that they require solving only linear differential
equations. These theories may be interesting in themselves as manageable
nonlinear theories. But, they can also be chosen to emulate genuinely nonlinear
theories of special interest, for which they can serve as approximations. The
idea can be applied to a large class of nonlinear theories, exemplified here
with a PL analogs of scalar theories, and of Born-Infeld (BI) electrodynamics.
The general class of such PL theories of electromagnetism are governed by a
Lagrangian L=-(1/2)F_mnQ^mn+ S(Q_mn), where the electromagnetic field couples
to currents in the standard way, while Qmn is an auxiliary field, derived from
a vector potential that does not couple directly to currents. By picking a
special form of S(Q_mn), we can make such a theory similar in some regards to a
given fully nonlinear theory, governed by the Lagrangian -U(F_mn). A
particularly felicitous choice is to take S as the Legendre transform of U. For
the BI theory, this Legendre transform has the same form as the BI Lagrangian
itself. Various matter-of-principle questions remain to be answered regarding
such theories. As a specific example, I discuss BI electrostatics in more
detail. As an aside, for BI, I derive an exact expression for the
short-distance force between two arbitrary point charges of the same sign, in
any dimension.Comment: 20 pages, Version published in Phys. Rev.
Suspension and levitation in nonlinear theories
I investigate stable equilibria of bodies in potential fields satisfying a
generalized Poisson equation: divergence[m(grad phi) grad phi]= source density.
This describes diverse systems such as nonlinear dielectrics, certain flow
problems, magnets, and superconductors in nonlinear magnetic media; equilibria
of forced soap films; and equilibria in certain nonlinear field theories such
as Born-Infeld electromagnetism. Earnshaw's theorem, totally barring stable
equilibria in the linear case, breaks down. While it is still impossible to
suspend a test, point charge or dipole, one can suspend point bodies of finite
charge, or extended test-charge bodies. I examine circumstances under which
this can be done, using limits and special cases. I also consider the analogue
of magnetic trapping of neutral (dipolar) particles.Comment: Five pages, Revtex, to appear in Physics Letters
Postquantum Br\`{e}gman relative entropies and nonlinear resource theories
We introduce the family of postquantum Br\`{e}gman relative entropies, based
on nonlinear embeddings into reflexive Banach spaces (with examples given by
reflexive noncommutative Orlicz spaces over semi-finite W*-algebras,
nonassociative L spaces over semi-finite JBW-algebras, and noncommutative
L spaces over arbitrary W*-algebras). This allows us to define a class of
geometric categories for nonlinear postquantum inference theory (providing an
extension of Chencov's approach to foundations of statistical inference), with
constrained maximisations of Br\`{e}gman relative entropies as morphisms and
nonlinear images of closed convex sets as objects. Further generalisation to a
framework for nonlinear convex operational theories is developed using a larger
class of morphisms, determined by Br\`{e}gman nonexpansive operations (which
provide a well-behaved family of Mielnik's nonlinear transmitters). As an
application, we derive a range of nonlinear postquantum resource theories
determined in terms of this class of operations.Comment: v2: several corrections and improvements, including an extension to
the postquantum (generally) and JBW-algebraic (specifically) cases, a section
on nonlinear resource theories, and more informative paper's titl
Nonlinear Realization of Spontaneously Broken N=1 Supersymmetry Revisited
This paper revisits the nonlinear realization of spontaneously broken N=1
supersymmetry. It is shown that the constrained superfield formalism can be
reinterpreted in the language of standard realization of nonlinear
supersymmetry via a new and simpler route. Explicit formulas of actions are
presented for general renormalizable theories with or without gauge
interactions. The nonlinear Wess-Zumino gauge is discussed and relations are
pointed out for different definitions of gauge fields. In addition, a general
procedure is provided to deal with theories of arbitrary Kahler potentials.Comment: 1+18 pages, LaTe
- …