10 research outputs found

    NAD<sup>+</sup>accumulation as a metabolic off switch for orthodox pollen

    Get PDF
    Terrestrial plant pollen is classified into two categories based on its metabolic status: pollen with low-metabolism are termed โ€œorthodoxโ€ and pollen with high-metabolism are termed โ€œrecalcitrant.โ€ Nicotinamide adenine dinucleotide (NAD) is crucial for a number of metabolisms in all extant organisms. It has recently been shown that NAD homeostasis plays an important role in a broad range of developmental processes and responses to environment. Recently, a reverse genetic approach shed light on the significance of NAD biosynthesis on pollen fate. In orthodox Arabidopsis pollen, NAD(+) that was accumulated in excess at dispersal dramatically decreased on rehydration. The lack of a key gene that is involved in NAD biosynthesis compromised the excess accumulation. Moreover, absence of the excess accumulation phenocopied the so-called recalcitrant pollen, as demonstrated by the germination inside anthers and the loss of desiccation tolerance. Upon rehydration, NAD(+)-consuming inhibitors impaired tube germination. Taken together, our results suggest that accumulation of NAD(+) functions as a physiochemical molecular switch for suspended metabolism and that the decrease of NAD(+) plays a very important role during transitions in metabolic states. Shifting of the redox state to an oxidizing environment may efficiently control the comprehensive metabolic network underlying the onset of pollen germination

    Molecular insights into plant proteins involved in NAD biosynthesis and signalling

    Get PDF
    L'importanza delle vitamine del gruppo B per la vita รจ stata accertata da piรน di un secolo. La forma biologicamente attiva della vitamina B3, il coenzima NAD+, svolge un ruolo centrale come scambiatore di elettroni, substrato enzimatico e molecola di segnalazione. Il metabolismo del NAD+ nelle piante si รจ rapidamente rivelato una rete complessa, che ha un impatto non solo sui principali percorsi biochimici intracellulari delle piante (fotosintesi, respirazione,...), ma anche sui processi di sviluppo a livello sistemico come la germinazione dei semi, la riproduzione e l'adattamento a diversi tipi di stress, con un ruolo particolare nell'immunitร  delle piante. Il lavoro di questa tesi mira a far luce sul ruolo del NAD+ nelle piante, sia a livello intracellulare che extracellulare. L'attivitร  di ricerca si รจ concentrata su due proteine di A. thaliana, un modello universalmente accettato per le piante. Nella prima parte di questa tesi di dottorato, descritta nel capitolo III, forniamo una caratterizzazione completa di un enzima chiave della biosintesi del NAD+, la NaMN/NMN adenililtransferasi, che catalizza una reazione comune sia alle vie de novo che a quelle di salvataggio, unificando cosรฌ tutte le vie biosintetiche del NAD+ e influenzando l'intero metabolismo della pianta. Nella seconda parte della tesi, riportata nel capitolo IV, si descrive la produzione di una forma ricombinante del dominio extracellulare del recettore lectin receptor kinase 1.8 di A. thaliana. Questo proteina transmembrana รจ altamente affine e specifico per NAD+. La sua interazione con il NAD+ extracellulare promuove la trascrizione di numerosi effettori immunitari.The importance of the vitamins of the group B for life, has been established since more than a century ago. The biologically active form of the B3 vitamin, i.e., the coenzyme NAD+, plays a central role electron exchanger, enzymatic substrate and signalling molecule. NAD+ metabolism in plants quickly turned out to be a complex network, impacting not only the core intracellular plant biochemistry pathways (photosynthesis, respiration,โ€ฆ), but also developmental processes at a systemic level such as seed germination, reproduction, and the adaptation to several types of stresses, with a particular role in plant immunity. The work of this thesis aims to shed light on the role of NAD+ in plants, both intracellularly and in the extracellular space. The activity research focused on two proteins from A. thaliana, an universally accepted model for plants. In the first part of this PhD dissertation, described in chapter III, we provide a complete characterization of a key enzyme of NAD+ biosynthesis, NaMN/NMN adenylyltransferase, which catalyses a reaction common to both de novo and salvage pathways, thus unifying all NAD+ biosynthetic routes and influencing the whole plant metabolism. In the second part of the thesis, reported in chapter IV, we describe the production of a recombinant form of the extracellular domain of the receptor of A. thaliana lectin receptor kinase 1.8. This transmembrane protein is highly affine and specific for NAD+. Its interaction with extracellular NAD+ promotes transcription of several immune effectors

    The mitochondrial NAD+ transporter (NDT1) plays important roles in cellular NAD+ homeostasis in \u3ci\u3eArabidopsis thaliana\u3c/i\u3e

    Get PDF
    Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme required for all living organisms. In eukaryotic cells, the final step of NAD+ biosynthesis is exclusively cytosolic. Hence, NAD+ must be imported into organelles to support their metabolic functions. Three NAD+ transporters belonging to the mitochondrial carrier family (MCF) have been biochemically characterized in plants. AtNDT1 (At2g47490), focus of the current study, AtNDT2 (At1g25380), targeted to the inner mitochondrial membrane, and AtPXN (At2g39970), located in the peroxisomal membrane. Although AtNDT1 was presumed to reside in the chloroplast membrane, subcellular localization experiments with green fluorescent protein (GFP) fusions revealed that AtNDT1 locates exclusively in the mitochondrial membrane in stably transformed Arabidopsis plants. To understand the biological function of AtNDT1 in Arabidopsis, three transgenic lines containing an antisense construct of AtNDT1 under the control of the 35S promoter alongside a T-DNA insertional line were evaluated. Plants with reduced AtNDT1 expression displayed lower pollen viability, silique length, and higher rate of seed abortion. Furthermore, these plants also exhibited an increased leaf number and leaf area concomitant with higher photosynthetic rates and higher levels of sucrose and starch. Therefore, lower expression of AtNDT1 was associated with enhanced vegetative growth but severe impairment of the reproductive stage. These results are discussed in the context of the mitochondrial localization of AtNDT1 and its important role in the cellular NAD+ homeostasis for both metabolic and developmental processes in plants

    ไปฃ่ฌๅทฅๅญฆใซใ‚ˆใ‚‹็’ฐๅขƒใ‚นใƒˆใƒฌใ‚น่€ๆ€งๆค็‰ฉใฎๅˆ†ๅญ่‚ฒ็จฎ

    Get PDF
    ใƒ—ใƒญใ‚ธใ‚งใ‚ฏใƒˆ็•ชๅท : A10-101ไธ€่ˆฌ็ ”็ฉถ : ๅค–้ƒจ่ณ‡้‡‘็ฒๅพ—ไฟƒ้€ฒ็ ”็ฉถtextapplication/pdfresearch repor

    Thriving in a salty future:morpho-anatomical, physiological and molecular adaptations to salt stress in alfalfa (Medicago sativa L.) and other crops

    Get PDF
    BackgroundWith soil salinity levels rising at an alarming rate, accelerated by climate change and human interventions, there is a growing need for crop varieties that can grow on saline soils. Alfalfa (Medicago sativa) is a cool-season perennial leguminous crop, commonly grown as forage, biofuel feedstock, and soil conditioner. It demonstrates significant potential for agricultural circularity and sustainability, for example by fixing nitrogen, sequestering carbon, and improving soil structures. Although alfalfa is traditionally regarded as moderately salt-tolerant species, modern alfalfa varieties display specific salt-tolerance mechanisms, which could be used to pave alfalfaโ€™s role as a leading crop able to grow on saline soils.ScopeAlfalfaโ€™s salt tolerance underlies a large variety of cascading biochemical and physiological mechanisms. These are partly enabled by alfalfaโ€™s complex genome structure and out-crossing nature, which on the other hand entail impediments for molecular and genetic studies. This review first summarizes the general effects of salinity on plants and the broad-ranging mechanisms for dealing with salt-induced osmotic stress, ion toxicity, and secondary stress. Secondly, we address defensive and adaptive strategies that have been described for alfalfa, such as the plasticity of alfalfaโ€™s root system, hormonal crosstalk for maintaining ion homeostasis, spatiotemporal specialized metabolite profiles, and the protection of alfalfa-rhizobia associations. Finally, bottlenecks for research of the physiological and molecular salt-stress responses as well as biotechnology-driven improvements of salt tolerance are identified and discussed.ConclusionUnderstanding morpho-anatomical, physiological, and molecular responses to salinity is essential for the improvement of alfalfa and other crops in saline land reclamation. This review identifies potential breeding targets for enhancing alfalfa performance stability and general crop robustness for rising salt levels as well as to promote alfalfa applications in saline land management

    ์• ๊ธฐ์žฅ๋Œ€์˜ ๋ฐœ๋‹ฌ ๊ณผ์ • ๋ฐ ๋ฐฐ์ถ”์˜ ์•„์ข… ๋‚ด ํ˜•ํƒœํ•™์  ๋‹ค์–‘์„ฑ์— ๋Œ€ํ•œ ํ›„์„ฑ์œ ์ „ํ•™์  ์กฐ์ ˆ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ์‹๋ฌผ์ƒ์‚ฐ๊ณผํ•™๋ถ€, 2022. 8. ํ—ˆ์ง„ํšŒ.Epigenetic mechanisms play crucial roles in diverse biological processes such as cell differentiation and responses to developmental and environmental cues. Epigenetic modifications including DNA methylation and histone modifications can alter gene expression through modulating chromatin structure without DNA sequence changes. Plants can perceive and respond to internal or external signals, where gene expression may be epigenetically regulated. Moreover, some epigenetic variations may be stably inherited and conceivably contribute to important phenotypic traits. However, the detailed mechanisms of epigenetic factor-mediated developmental and environmental plasticity and their evolutionary significance associated with traits remain to be explored in plants. In this study, I investigated environmental and developmental responses regulated by DNA demethylases in Arabidopsis. DNA methylation can be actively removed by the DEMETER (DME) family of DNA glycosylases, together with REPRESSOR OF SILENCING 1 (ROS1), DEMETER-LIKE 2 (DML2) and DML3. Two ros1 mutant lines were hypersensitive to abscisic acid (ABA). Downregulation of ABA-inducible genes was accompanied by DNA hypermethylation at their promoter regions in ros1, indicating ROS1-dependent DNA demethylation is required for transcriptional activation in ABA-mediated drought and osmotic stress responses. I further extended this research to examine the combined function of DNA demethylases in reproductive development. I observed several developmental defects such as delayed growth and flowering, aberrant floral development and short unfertilized siliques in the dme ros1 dml2 dml3 (drdd) quadruple homozygous mutant. Gene expression is significantly reduced in drdd compared to WT, rather than in dme and rdd, accompanied with an increase in DNA methylation levels. These findings suggest that DNA demethylases act redundantly for the proper regulation of genes during reproductive development. In addition, I analyzed the morphological divergence between the two subspecies Chinese cabbage (Brassica rapa subsp. pekinensis) and turnip (B. rapa subsp. rapa) despite high genetic similarity. Comprehensive analysis of transcriptome and epigenome revealed that accessible chromatin regions (ACRs) were associated with the expression dynamics, histone H3 lysine 27 acetylation enrichment and the depletion of DNA methylation. The distant ACRs of the two subspecies were highly conserved but displayed divergent chromatin accessibility with differential enrichment of transcription factor motifs. These results indicate that subspecies-specific divergence of distal enhancers might be responsible for morphotype diversification. Taken together, this study will broaden the understanding of regulatory mechanisms of DNA demethylation in response to environmental and developmental cues and provide insights into distal enhancer-derived subspecies diversification during evolution.ํ›„์„ฑ์œ ์ „ํ•™์  ๊ธฐ์ž‘์€ ์„ธํฌ ๋ถ„ํ™”, ๋‚ด๋ถ€ ๋ฐœ๋‹ฌ ์‹ ํ˜ธ ๋ฐ ์™ธ๋ถ€ ํ™˜๊ฒฝ ์š”์ธ์— ๋Œ€ํ•œ ๋ฐ˜์‘ ๋“ฑ ๋‹ค์–‘ํ•œ ์ƒ๋ฌผํ•™์  ๋ฐ˜์‘์„ ์กฐ์ ˆํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. DNA ๋ฉ”ํ‹ธํ™”, ํžˆ์Šคํ†ค ๋ณ€ํ˜• ๋“ฑ์˜ ํ›„์„ฑ์œ ์ „ํ•™์  ๋ณ€ํ˜•์€ DNA ์—ผ๊ธฐ์„œ์—ด์˜ ๋ณ€ํ™” ์—†์ด ์—ผ์ƒ‰์งˆ ๊ตฌ์กฐ ๋ณ€ํ™”๋ฅผ ํ†ตํ•ด ์œ ์ „์ž ๋ฐœํ˜„์„ ๋ณ€ํ™”์‹œํ‚จ๋‹ค. ์‹๋ฌผ์€ ๋‚ด๋ถ€ ๋ฐ ์™ธ๋ถ€ ์ž๊ทน์„ ์ธ์ง€ํ•˜๊ณ  ๋ฐ˜์‘ํ•˜์—ฌ ํ›„์„ฑ์œ ์ „ํ•™์ ์œผ๋กœ ์œ ์ „์ž ๋ฐœํ˜„์„ ์กฐ์ ˆํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ผ๋ถ€ ํ›„์„ฑ์œ ์ „ํ•™์  ๋ณ€์ด๋Š” ์•ˆ์ •์ ์œผ๋กœ ํ›„๋Œ€์— ์ „๋‹ฌ๋จ์œผ๋กœ์จ ์ฃผ์š” ํ˜•์งˆ์— ๊ธฐ์—ฌํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์„ธ๋ถ€์ ์ธ ํ›„์„ฑ์œ ์ „ํ•™์  ์กฐ์ ˆ ๊ธฐ์ž‘ ๋ฐ ํ˜•์งˆ๊ณผ ์—ฐ๊ด€๋œ ์ง„ํ™”์  ์ค‘์š”์„ฑ์€ ์•„์ง ์‹๋ฌผ์—์„œ ๋งŽ์ด ๋ฐํ˜€์ง€์ง€ ์•Š์•˜๋‹ค. DNA ๋ฉ”ํ‹ธํ™” ์ˆ˜์ค€์€ DNA ๋ฉ”ํ‹ธํ™”์™€ ํƒˆ๋ฉ”ํ‹ธํ™” ๊ธฐ์ž‘์— ์˜ํ•ด ์กฐ์ ˆ๋œ๋‹ค. ์• ๊ธฐ์žฅ๋Œ€์—์„œ DNA ๋ฉ”ํ‹ธํ™”๋Š” DNA ํƒˆ๋ฉ”ํ‹ธํ™” ํšจ์†Œ์— ์˜ํ•ด ์ œ๊ฑฐ๋˜๋Š”๋ฐ, DEMTER (DME), REPRESSOR OF SILENCING 1 (ROS1), DEMETER-LIKE 2 (DML2) ๋ฐ DML3๊ฐ€ ์ด๋ฅผ ๋‹ด๋‹นํ•œ๋‹ค. DME๋Š” ์•”๋ฐฐ์šฐ์ฒด์˜ ์ค‘์‹ฌ์„ธํฌ์—์„œ ์ฃผ๋กœ ๋ฐœํ˜„๋˜๋Š” ๋ฐ˜๋ฉด์—, ROS1, DML2 ๋ฐ DML3๋Š” ์˜์–‘์กฐ์ง์—์„œ ๋ฐœํ˜„๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์• ๊ธฐ์žฅ๋Œ€์—์„œ DNA ํƒˆ๋ฉ”ํ‹ธํ™” ํšจ์†Œ์— ์˜ํ•œ ํ™˜๊ฒฝ ๋ฐ ๋ฐœ๋‹ฌ ๋ฐ˜์‘ ์กฐ์ ˆ์„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ros1 ๋Œ์—ฐ๋ณ€์ด์ฒด๋Š” ์•ฑ์‹œ์Šค์‚ฐ ์ฒ˜๋ฆฌ ์‹œ ์•ผ์ƒํ˜•์— ๋น„ํ•ด ์œ ๋ฌ˜ ๋ฐ ๋ฟŒ๋ฆฌ ๋ฐœ๋‹ฌ์ด ์ €ํ•ด๋˜์—ˆ๋‹ค. ros1 ๋Œ์—ฐ๋ณ€์ด์ฒด์—์„œ ์•ฑ์‹œ์Šค์‚ฐ ์œ ๋„์„ฑ ์œ ์ „์ž๋“ค์˜ ๋ฐœํ˜„์ด ๊ฐ์†Œํ•˜์˜€์œผ๋ฉฐ, ํ”„๋กœ๋ชจํ„ฐ ์ง€์—ญ์—์„œ DNA ๋ฉ”ํ‹ธํ™” ์ˆ˜์ค€์ด ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ROS1์— ์˜ํ•œ DNA ํƒˆ๋ฉ”ํ‹ธํ™”๋Š” ์•ฑ์‹œ์Šค์‚ฐ์ด ๋งค๊ฐœํ•˜๋Š” ๊ฐ€๋ญ„ ๋ฐ ์ˆ˜๋ถ„ ์ŠคํŠธ๋ ˆ์Šค ๋ฐ˜์‘์— ํ•„์š”ํ•œ ์œ ์ „์ž๋“ค์˜ ๋ฐœํ˜„์„ ํ™œ์„ฑํ™”ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค. ๋” ๋‚˜์•„๊ฐ€ ์ƒ์‹ ์ƒ์žฅ์— ์žˆ์–ด DNA ํƒˆ๋ฉ”ํ‹ธํ™” ํšจ์†Œ์˜ ์—ญํ• ์„ ๋ฐํžˆ๊ณ ์ž ํ•˜์˜€๋‹ค. ์• ๊ธฐ์žฅ๋Œ€ dme ros1 dml2 dml3 (drdd) ์‚ฌ์ค‘ ๋Œ์—ฐ๋ณ€์ด์ฒด๋Š” ์„ฑ์žฅ ์ง€์—ฐ, ๊ฐœํ™” ์‹œ๊ธฐ ์ง€์—ฐ, ๋น„์ •์ƒ์  ํ™”๊ธฐ ๊ตฌ์กฐ ๋ฐ ๊ผฌํˆฌ๋ฆฌ ๋ฐœ๋‹ฌ ๋“ฑ์˜ ํ‘œํ˜„ํ˜•์„ ๋ณด์˜€๋‹ค. ์‚ฌ์ค‘ ๋Œ์—ฐ๋ณ€์ด์ฒด์—์„œ๋Š” dme ๋˜๋Š” rdd ๋Œ์—ฐ๋ณ€์ด์ฒด ๋น„ํ•ด ์œ ์ „์ž ๋ฐœํ˜„ ๊ฐ์†Œ์™€ DNA ๋ฉ”ํ‹ธํ™” ์ฆ๊ฐ€๊ฐ€ ๋‘๋“œ๋Ÿฌ์กŒ๋‹ค. ์ด๋Š” ์—ฌ๋ŸฌDNA ํƒˆ๋ฉ”ํ‹ธํ™” ํšจ์†Œ๊ฐ€ ์ƒ์‹ ์ƒ์žฅ์— ํ•„์š”ํ•œ ์œ ์ „์ž์˜ ๋ฐœํ˜„์„ ์ค‘๋ณต์ ์œผ๋กœ ์กฐ์ ˆํ•จ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋˜ํ•œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฐฐ์ถ”(Brassica rapa subsp. pekinensis)์™€ ์ˆœ๋ฌด(B. rapa subsp. rapa)์˜ ํ˜•ํƒœํ•™์  ๋‹ค์–‘์„ฑ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋ฐฐ์ถ”์™€ ์ˆœ๋ฌด๋Š” ๊ฐ™์€ ์ข…์œผ๋กœ ์œ ์‚ฌํ•œ ์œ ์ „์ฒด๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์ง€๋งŒ, ์ƒ์ดํ•œ ํ‘œํ˜„ํ˜•์„ ๋ณด์ธ๋‹ค. ์ „์‚ฌ์ฒด ๋ฐ ํ›„์„ฑ์œ ์ „์ฒด ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ๋ฐฐ์ถ”์™€ ์ˆœ๋ฌด์˜ ์—ด๋ฆฐ ์—ผ์ƒ‰์งˆ ์ง€์—ญ์€ ์œ ์ „์ž ๋ฐœํ˜„ ๋ณ€ํ™” ๋ฒ”์œ„, ํžˆ์Šคํ†ค H3์˜ 27๋ฒˆ์งธ ๋ผ์ด์‹  ์•„์„ธํ‹ธํ™” (H3 lysine 27 acetylation) ๋ฐ ๋‚ฎ์€ DNA ๋ฉ”ํ‹ธํ™” ์ˆ˜์ค€๊ณผ ์—ฐ๊ด€๋˜์–ด ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์œ ์ „์ž๋กœ๋ถ€ํ„ฐ ๋จผ ๊ฑฐ๋ฆฌ์— ์œ„์น˜ํ•˜๋Š” ์—ด๋ฆฐ ์—ผ์ƒ‰์งˆ ์ง€์—ญ์€ ๋ฐฐ์ถ”์™€ ์ˆœ๋ฌด ๊ฐ„์— DNA ์—ผ๊ธฐ์„œ์—ด์ด ๋†’์€ ์ˆ˜์ค€์œผ๋กœ ๋ณด์กด๋˜์–ด ์žˆ์—ˆ์œผ๋‚˜, ์—ผ์ƒ‰์งˆ ์ ‘๊ทผ์„ฑ๊ณผ ์ „์ด์ธ์ž ๋ชจํ‹ฐํ”„๋Š” ์ƒ์ดํ•œ ์–‘์ƒ์„ ๋ณด์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ์•„์ข… ๊ฐ„์˜ ์—ผ์ƒ‰์งˆ ์ ‘๊ทผ์„ฑ์˜ ์ฐจ์ด๊ฐ€ ํ˜•ํƒœํ•™์  ๋‹ค์–‘์„ฑ์— ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์™ธ๋ถ€ ํ™˜๊ฒฝ ์š”์ธ๊ณผ ๋‚ด๋ถ€ ๋ฐœ๋‹ฌ ์‹ ํ˜ธ์— ๋ฐ˜์‘ํ•˜์—ฌ ์ผ์–ด๋‚˜๋Š” DNA ํƒˆ๋ฉ”ํ‹ธํ™” ํšจ์†Œ์— ์˜ํ•œ ์œ ์ „์ž ๋ฐœํ˜„ ์กฐ์ ˆ ๊ธฐ์ž‘์— ๋Œ€ํ•œ ์ดํ•ด๋ฅผ ๋†’์ด๊ณ , ์ง„ํ™” ๊ณผ์ • ๋™์•ˆ ์—ผ์ƒ‰์งˆ ๊ตฌ์กฐ ์ฐจ์ด์—์„œ ๊ธฐ์ธํ•˜๋Š” ์•„์ข… ๊ฐ„ ํ˜•ํƒœ์  ์ฐจ์ด์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ๊ด€์ ์„ ์ œ์‹œํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.GENERAL INTRODUCTION 1 CHAPTER 1. Plant-Specific DNA Demethylation in Response to Abscisic Acid 16 ABSTRACT 17 INTRODUCTION 19 MATERIALS AND METHODS 25 RESULTS 30 DISCUSSION 53 REFERENCES 57 CHAPTER 2. Regulation of Reproductive Development by DNA Demethylases in Arabidopsis 64 ABSTRACT 65 INTRODUCTION 67 MATERIALS AND METHODS 72 RESULTS 77 DISCUSSION 112 REFERENCES 116 CHAPTER 3. Comparative Analysis of Genome and Epigenome Landscapes in Brassica rapa subspecies 121 ABSTRACT 122 INTRODUCTION 124 MATERIALS AND METHODS 130 RESULTS 138 DISCUSSION 177 REFERENCES 182 ABSTRACT IN KOREAN 193๋ฐ•

    Polyamine signaling pathway during environmental stress: Metabolomic approaches to elucidate spermine down-stream targets

    Get PDF
    [spa] El estrรฉs medioambiental estรก afectando de forma paulatina la productividad de los cultivos. En la bรบsqueda de soluciones, uno de los principales objetivos de la investigaciรณn en fisiologรญa de plantas, es dilucidar los mecanismos de tolerancia que se presentan ante diversos estreses, con la finalidad de generar plantas con fenotipos resistentes. En referencia a este asunto, las poliaminas y sus rutas seรฑalizadoras son de importancia crucial. Las mรกs abundantes en plantas (putrescina, espermidina y espermina) tienden a acumularse en respuesta al estrรฉs por lo cual se les asocia a un rol protector, sin embargo, las tendencias de acumulaciรณn dependen del tipo de estrรฉs que la planta es capaz de percibir. De hecho, su ruta biosintรฉtica se activa a diferentes niveles dependiendo del estรญmulo, lo cual les confiere un carรกcter selectivo. La Espermina (una de las poliaminas superiores) no es esencial para el crecimiento de la planta, no obstante, actualmente se sabe que esta molรฉcula ejerce diversos roles protectores en una gran variedad de condiciones y ademรกs activa cascadas seรฑalizadoras implicadas en la respuesta defensiva de la planta. En consecuencia, para dilucidar los mecanismos de tolerancia, se ha hecho necesario profundizar en las dianas de seรฑalizaciรณn por parte de la espermina. Empleando como modelo experimental Arabidopsis thaliana, el presente estudio ha demostrado la implicaciรณn de este policatiรณn en el aumento de la capacidad anti-oxidativa a travรฉs de conexiones con metabolitos centrales en el metabolismo de azucares, lรญpidos y aminoรกcidos como es el caso del piruvato y el mio-Inositol, asรญ como tambiรฉn, la implicaciรณn de esta poliamina en la morfologรญa y ramificaciรณn de las raรญces, reforzando la nociรณn de implicaciรณn esencial por parte de esta poliamina, en la fisiologรญa del estrรฉs en plantas.[eng] Environmental stress is increasingly wearing down crop productivity. Nowadays, one of the main aims of plant research is to elucidate tolerance mechanisms to diverse stresses, in order to provide solutions by generating stress-tolerant plants. In regard with this matter, polyamine signaling pathway is of crucial importance. The major polyamines in plants (putrescine, spermidine and spermine) tend to accumulate in response to stress and are associated with a protective role. The trend of their accumulation is related to the stress the plant is sensing; in fact, polyamine biosynthetic pathway is activated at different levels depending on the stimulus, which gives a selective role to these molecules. Spermine, one of the higher polyamines, is not essential for plant growth; however, it is presently known that this molecule plays diverse protective roles under several stress factors and triggers signaling cascades implicated in plant defense. Therefore, research on spermine down-stream targets has become necessary towards the elucidation of plant tolerance responses. By the use of model plant Arabidopsis thaliana this study demonstrated the implication of this polycation on enhancement of anti-oxidative capacity by signaling connections to central hub metabolites for sugar, lipid and amino acid metabolism such as pyruvate or myo-Inositol, as well as its involvement on root morphology

    ๆดปๅ‹•ๅ ฑๅ‘Š้›†

    Get PDF
    227ptextapplication/pdfdepartmental bulletin pape
    corecore