14,622 research outputs found
Semantic variation operators for multidimensional genetic programming
Multidimensional genetic programming represents candidate solutions as sets
of programs, and thereby provides an interesting framework for exploiting
building block identification. Towards this goal, we investigate the use of
machine learning as a way to bias which components of programs are promoted,
and propose two semantic operators to choose where useful building blocks are
placed during crossover. A forward stagewise crossover operator we propose
leads to significant improvements on a set of regression problems, and produces
state-of-the-art results in a large benchmark study. We discuss this
architecture and others in terms of their propensity for allowing heuristic
search to utilize information during the evolutionary process. Finally, we look
at the collinearity and complexity of the data representations that result from
these architectures, with a view towards disentangling factors of variation in
application.Comment: 9 pages, 8 figures, GECCO 201
A Survey on Evolutionary Computation for Computer Vision and Image Analysis: Past, Present, and Future Trends
Computer vision (CV) is a big and important field
in artificial intelligence covering a wide range of applications.
Image analysis is a major task in CV aiming to extract, analyse
and understand the visual content of images. However, imagerelated
tasks are very challenging due to many factors, e.g., high
variations across images, high dimensionality, domain expertise
requirement, and image distortions. Evolutionary computation
(EC) approaches have been widely used for image analysis with
significant achievement. However, there is no comprehensive
survey of existing EC approaches to image analysis. To fill
this gap, this paper provides a comprehensive survey covering
all essential EC approaches to important image analysis tasks
including edge detection, image segmentation, image feature
analysis, image classification, object detection, and others. This
survey aims to provide a better understanding of evolutionary
computer vision (ECV) by discussing the contributions of different
approaches and exploring how and why EC is used for
CV and image analysis. The applications, challenges, issues, and
trends associated to this research field are also discussed and
summarised to provide further guidelines and opportunities for
future research
Machine Learning for Fluid Mechanics
The field of fluid mechanics is rapidly advancing, driven by unprecedented
volumes of data from field measurements, experiments and large-scale
simulations at multiple spatiotemporal scales. Machine learning offers a wealth
of techniques to extract information from data that could be translated into
knowledge about the underlying fluid mechanics. Moreover, machine learning
algorithms can augment domain knowledge and automate tasks related to flow
control and optimization. This article presents an overview of past history,
current developments, and emerging opportunities of machine learning for fluid
mechanics. It outlines fundamental machine learning methodologies and discusses
their uses for understanding, modeling, optimizing, and controlling fluid
flows. The strengths and limitations of these methods are addressed from the
perspective of scientific inquiry that considers data as an inherent part of
modeling, experimentation, and simulation. Machine learning provides a powerful
information processing framework that can enrich, and possibly even transform,
current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202
Nonlinear Models of Neural and Genetic Network Dynamics:\ud \ud Natural Transformations of Ćukasiewicz Logic LM-Algebras in a Ćukasiewicz-Topos as Representations of Neural Network Development and Neoplastic Transformations \ud
A categorical and Ćukasiewicz-Topos framework for Algebraic Logic models of nonlinear dynamics in complex functional systems such as Neural Networks, Cell Genome and Interactome Networks is introduced. Ćukasiewicz Algebraic Logic models of both neural and genetic networks and signaling pathways in cells are formulated in terms of nonlinear dynamic systems with n-state components that allow for the generalization of previous logical models of both genetic activities and neural networks. An algebraic formulation of variable next-state/transfer functions is extended to a Ćukasiewicz Topos with an N-valued Ćukasiewicz Algebraic Logic subobject classifier description that represents non-random and nonlinear network activities as well as their transformations in developmental processes and carcinogenesis.\u
- âŠ