282,836 research outputs found

    Nerve cell differentiation in hydra requires two signals

    Get PDF
    Endogenous signals controlling nerve cell commitment in hydra were investigated using an assay for committed nerve precursors. Extracts of hydra tissue were prepared and tested for their ability to induce nerve cell commitment. The active component in such extracts was identified as a neuropeptide, the head activator [H. C. Schaller and H. Bodenmüller (1981) Proc. Natl. Acad. Sci. USA 78, 7000–7004], based on its chromatographic properties and reaction with anti-head activator antibody. In addition, synthetic head activator (10−13–10−11 M) was shown to cause nerve cell commitment. Additional experiments demonstrated that committed nerve precursors require a second signal to differentiate nerve cells. Committed precursors induced by treatment of hydra with head activator do not differentiate in whole hydra; but do differentiate when pieces of treated tissue are explanted or when whole animals are simply injured with transverse cuts. The injury stimulus is long-lived. It cannot be replaced with head activator (10−12–10−10 M) but is contained in a methanol extract of hydra tissue

    Nerve commitment in Hydra. I. Role of morphogenetic signals

    Get PDF
    The kinetics of nerve commitment during head regeneration in Hydra were investigated using a newly developed assay for committed cells. Committed nerve precursors were assayed by their ability to continue nerve differentiation following explanation of small pieces of tissue. Committed nerve precursors appear at the site of regeneration within 6 hr after cutting and increase rapidly. The increase is localized to the site of regeneration and does not occur at proximal sites in the body column of the regenerate. The increase is delayed about 8–12 hr when regeneration occurs at sites lower in the body column. The results show, furthermore, that redistribution of committed precursors does not play a major role in the pattern of nerve differentiation during regeneration. Since the increase in committed nerves coincides with the increase in morphogenetic potential of the regenerating tissue, the results strengthen the idea that morphogenetic signals are involved directly in the control of nerve commitment in Hydra

    Role of the cellular environment in interstitial stem cell proliferation in Hydra

    Get PDF
    The role of the cellular environment on hydra stem cell proliferation and differentiation was investigated by introduction of interstitial cells into host tissue of defined cellular composition. In epithelial tissue lacking all non-epithelial cells the interstitial cell population did not grow but differentiated into nerve cells and nematocytes. In host tissue with progressively increased numbers of nerve cells growth of the interstitial cell population was positively correlated to the nerve cell density. In agreement with previous observations (Bode et al. 1976), growth of the interstitial cell population was also found to be negatively correlated to the level of interstitial cells present. The strong correlation between the growth of the interstitial cell population and the presence of interstitial cells and nerve cells implies that interstitial cell proliferation is controlled by a feedback signal from interstitial cells and their derivatives. Our results suggest that the cellular environment of interstitial cells provides cues which are instrumental in stem cell decision making

    Spatial pattern of nerve differentiation in Hydra is due to a pattern of nerve commitment

    Get PDF
    The pattern of nerve differentiation along the body column of Hydra was investigated. Nerve precursors in late S phase were labeled with [3H]thymidine and their distribution compared with that of newly differentiated nerves. The two distributions were found to be the same. Based on independent evidence that nerve commitment occurs in mid-to late S phase (G. Venugopal and C. David, 1981, Develop. Biol.83, 361–365) it was concluded that the pattern of nerve differentiation along the body column of Hydra is due to differences in nerve commitment in different body regions. Furthermore, the level of nerve commitment in head and foot tissue is sufficiently high to deplete stem cells in these regions as is observed

    Tentacle morphogenesis in hydra

    Get PDF
    Stimulation of tentacle-specific cell differentiation by the neuropeptide head activator was investigated in Hydra magnipapillata. Tentacle-specific sensory nerve cells were identified by a monoclonal antibody, NV1. Treatment of hydra with 1pM head activator for 18h stimulated differentiation of NV1+ nerve cells and tentacle epithelial cells in tissue from the distal gastric region. Head tissue and tissue from the proximal gastric region did not respond to head activator treatment with increased NV1+ differentiation. Hence the distal gastric region appears to be the site of tentacle formation in hydra. Tentacle precursors in head tissue seem to be committed since they fail to respond to head activator or to changes in tissue size with altered amounts of tentacle formation. We suggest that NV1 precursors form a complex with tentacle epithelial cell precursors, which then moves distally through the head region into the tentacles. The signal for NV1+ differentiation appears to be formation of this complex

    Myxoid Neurothekeoma of the Nipple

    Get PDF
    Neurothekeomas are rare benign cutaneous neoplasms of nerve sheath origin. They are primarily found in the superficial soft tissue and are also known as dermal nerve sheath myxomas. They are commonly found on the upper extremities, head and neck followed by trunk. Here is an unusual presentation of neurothekeoma occurring as a polypoidal lesion of the nipple in a young female patient

    Quantitative analysis of cell types during growth and morphogenesis in Hydra

    Get PDF
    Tissue maceration was used to determine the absolute number and the distribution of cell types in Hydra. It was shown that the total number of cells per animal as well as the distribution of cells vary depending on temperature, feeding conditions, and state of growth. During head and foot regeneration and during budding the first detectable change in the cell distribution is an increase in the number of nerve cells at the site of morphogenesis. These results and the finding that nerve cells are most concentrated in the head region, diminishing in density down the body column, are discussed in relation to tissue polarity

    Nerve Tissue

    Get PDF
    Histology blog entry for January 6, 2009 about nerve tissue
    corecore