1,454 research outputs found

    Phylogeny, biogeography and diversification patterns of side-necked turtles (Testudines: Pleurodira)

    Get PDF
    Pleurodires or side-necked turtles are today restricted to freshwater environments of South America, Africa– Madagascar and Australia, but in the past they were distributed much more broadly, being found also on Eurasia, India and North America, and marine environments. Two hypotheses were proposed to explain this distribution; in the first, vicariance would have shaped the current geographical distribution and, in the second, extinctions constrained a previously widespread distribution. Here, we aim to reconstruct pleurodiran biogeographic history and diversification patterns based on a new phylogenetic hypothesis recovered from the analysis of the largest morphological dataset yet compiled for the lineage, testing which biogeographical process prevailed during its evolutionary history. The resulting topology generally agrees with previous hypotheses of the group and shows that most diversification shifts were related to the exploration of new niches, e.g. littoral or marine radiations. In addition, as other turtles, pleurodires do not seem to have been much affected by either the Cretaceous– Palaeogene or the Eocene–Oligocene mass extinctions. The biogeographic analyses highlight the predominance of both anagenetic and cladogenetic dispersal events and support the importance of transoceanic dispersals as a more common driver of area changes than previously thought, agreeing with previous studies with other non-turtle lineages.Fil: Ferreira, Gabriel S.. Universidade de Sao Paulo; Brasil. Senckenberg Centre For Human Evolution And Palaeoenvironment; Alemania. Universität Tübingen; AlemaniaFil: Bronzati Filho, Mario. Bayerische Staatssammlung für Paläontologie und Geologie; AlemaniaFil: Langer, Max C.. Universidade de Sao Paulo; BrasilFil: Sterli, Juliana. Museo Paleontológico Egidio Feruglio; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Coordinated dispersal and pre-isthmian assembly of the central American ichthyofauna

    Get PDF
    © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. We document patterns of coordinated dispersal over evolutionary time frames in heroine cichlids and poeciliine live-bearers, the two most species-rich clades of freshwater fishes in the Caribbean basin. Observed dispersal rate (DO) values were estimated from time-calibrated molecular phylogenies in LAGRANGE+, a modified version of the ML-based parametric biogeographic program LAGRANGE. DO is measured in units of wallaces (wa) as the number of biogeographic range-expansion events per million years. DO estimates were generated on a dynamic paleogeographic landscape of five areas over three time intervals from Upper Cretaceous to Recent. Expected dispersal rate (DE) values were generated from alternative paleogeographic models, with dispersal rates proportional to target area and source-river discharge volume, and inversely proportional to paleogeographic distance. Correlations between DO and DE were used to assess the relative contributions of these three biogeographic parameters. DO estimates imply a persistent dispersal corridor across the Eastern (Antillean) margin of the Caribbean plate, under the influence of prevailing and perennial riverine discharge vectors such as the Proto-Orinoco-Amazon river. Ancestral area estimation places the earliest colonizations of the Greater Antilles and Central America during the Paleocene-Eocene (ca. 58-45 Ma), potentially during the existence of an incomplete Paleogene Arc (∼59 Ma) or Lesser Antilles Arc (∼45 Ma), but predating the GAARlandia land bridge (∼34-33 Ma). Paleogeographic distance is the single best predictor of DO. The Western (Central American) platemargin did not serve as a dispersal corridor until the LateNeogene (12-0 Ma), and contributed relatively little to the formation of modern distributions

    Diversity-dependent cladogenesis throughout western Mexico: Evolutionary biogeography of rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus)

    Full text link
    Rattlesnakes (Crotalus and Sistrurus) represent a radiation of approximately 42 species distributed throughout the New World from southern Canada to Argentina. Interest in this enigmatic group of snakes continues to accrue due, in part, to their ecomorphological diversity, contributions to global envenomations, and potential medicinal importance. Although the group has garnered substantial attention from systematists and evolutionary biologists for decades, little is still known regarding patterns of lineage diversification. In addition, few studies have statistically quantified broad-scale biogeographic patterns in rattlesnakes to ascertain how dispersal occurred throughout the New World, particularly among the different major biomes of the Americas. To examine diversification and biogeographic patterns in this group of snakes we assemble a multilocus data set consisting of over 6700 bp encompassing three nuclear loci (NT-3, RAG-1, C-mos) and seven mitochondrial genes (12S, 16S, ATPase6, ATPase8, ND4, ND5, cytb). Fossil-calibrated phylogenetic and subsequent diversification rate analyses are implemented using maximum likelihood and Bayesian inference, to examine their evolutionary history and temporal dynamics of diversity. Based on ancestral area reconstructions we explore dispersal patterns throughout the New World. Cladogenesis occurred predominantly during the Miocene and Pliocene with only two divergences during the Pleistocene. Two different diversification rate models, advocating diversity-dependence, are strongly supported. These models indicate an early rapid radiation followed by a recent speciation rate decline. Biogeographic analyses suggest that the high elevation pine-oak forests of western Mexico served as a major speciation pump for the majority of lineages, with the desert biome of western North America colonized independently at least twice. All together, these results provide evidence for rapid diversification of rattlesnakes throughout the Mexican highlands during the Neogene, likely in response to continual orogenesis of Mexico’s major mountain systems, followed by more recent dispersal into desert and tropical biomes

    Historical Biogeography of Velvet Ants (Hymenoptera: Mutillidae) in the North American Deserts and Arid Lands

    Get PDF
    Understanding the history of diversification in the North American deserts has long been a goal of biogeographers and evolutionary biologists. While it seems that a consensus is forming regarding the patterns of diversification in the Nearctic deserts in vertebrate taxa, little work has been done exploring the historical biogeography of widespread invertebrate taxa. Before a robust model of geobiotic change in the North American deserts can be proposed, it needs to be determined if the same historical events affected vertebrate and invertebrate taxa in the same way. I explored the phylogeographic patterns in four groups of widespread nocturnal velvet ants using two rDNA loci, the internal transcribed spacer regions 1 and 2 (ITS1 and ITS2). I used Bayesian phylogenetic analyses and haplotype network analyses to determine if a consistent geographic pattern exists among species and populations within each group. I also used molecular dating techniques to estimate divergence dates for each of the major phylogenetic clades. These analyses indicate that the species-level divergences in some groups occurred in the Neogene, and likely were driven by mountain building during Miocene-Pliocene times (~5 Ma) similar to the divergences in many vertebrate taxa, while species-level divergence in other groups occurred during the Pleistocene (1.8-0.1 Ma) and were likely driven by climatic oscillations and range contractions and expansion. Several recent studies have suggested that Neogene mountain-building events were more important to the development of a diverse desert-adapted biota. My research suggests, however, that both Neogene events and Pleistocene climatic changes were influential in the development of a species-rich nocturnal velvet ant fauna

    The drivers of tropical speciation

    Get PDF
    © 2014 Macmillan Publishers Limited. All rights reserved. Since the recognition that allopatric speciation can be induced by large-scale reconfigurations of the landscape that isolate formerly continuous populations, such as the separation of continents by plate tectonics, the uplift of mountains or the formation of large rivers, landscape change has been viewed as a primary driver of biological diversification. This process is referred to in biogeography as vicariance. In the most species-rich region of the world, the Neotropics, the sundering of populations associated with the Andean uplift is ascribed this principal role in speciation. An alternative model posits that rather than being directly linked to landscape change, allopatric speciation is initiated to a greater extent by dispersal events, with the principal drivers of speciation being organism-specific abilities to persist and disperse in the landscape. Landscape change is not a necessity for speciation in this model. Here we show that spatial and temporal patterns of genetic differentiation in Neotropical birds are highly discordant across lineages and are not reconcilable with a model linking speciation solely to landscape change. Instead, the strongest predictors of speciation are the amount of time a lineage has persisted in the landscape and the ability of birds to move through the landscape matrix. These results, augmented by the observation that most species-level diversity originated after episodes of major Andean uplift in the Neogene period, suggest that dispersal and differentiation on a matrix previously shaped by large-scale landscape events was a major driver of avian speciation in lowland Neotropical rainforests

    Vicariance and dispersal in southern hemisphere freshwater fish clades: a palaeontological perspective

    Full text link
    Widespread fish clades that occur mainly or exclusively in fresh water represent a key target of biogeographical investigation due to limited potential for crossing marine barriers. Timescales for the origin and diversification of these groups are crucial tests of vicariant scenarios in which continental break‐ups shaped modern geographic distributions. Evolutionary chronologies are commonly estimated through node‐based palaeontological calibration of molecular phylogenies, but this approach ignores most of the temporal information encoded in the known fossil record of a given taxon. Here, we review the fossil record of freshwater fish clades with a distribution encompassing disjunct landmasses in the southern hemisphere. Palaeontologically derived temporal and geographic data were used to infer the plausible biogeographic processes that shaped the distribution of these clades. For seven extant clades with a relatively well‐known fossil record, we used the stratigraphic distribution of their fossils to estimate confidence intervals on their times of origin. To do this, we employed a Bayesian framework that considers non‐uniform preservation potential of freshwater fish fossils through time, as well as uncertainty in the absolute age of fossil horizons. We provide the following estimates for the origin times of these clades: Lepidosireniformes [125–95 million years ago (Ma)]; total‐group Osteoglossomorpha (207–167 Ma); Characiformes (120–95 Ma; a younger estimate of 97–75 Ma when controversial Cenomanian fossils are excluded); Galaxiidae (235–21 Ma); Cyprinodontiformes (80–67 Ma); Channidae (79–43 Ma); Percichthyidae (127–69 Ma). These dates are mostly congruent with published molecular timetree estimates, despite the use of semi‐independent data. Our reassessment of the biogeographic history of southern hemisphere freshwater fishes shows that long‐distance dispersals and regional extinctions can confound and erode pre‐existing vicariance‐driven patterns. It is probable that disjunct distributions in many extant groups result from complex biogeographic processes that took place during the Late Cretaceous and Cenozoic. Although long‐distance dispersals likely shaped the distributions of several freshwater fish clades, their exact mechanisms and their impact on broader macroevolutionary and ecological dynamics are still unclear and require further investigation.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148368/1/brv12473_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148368/2/brv12473.pd

    Signatures of seaway closures and founder dispersal in the phylogeny of a circumglobally distributed seahorse lineage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The importance of vicariance events on the establishment of phylogeographic patterns in the marine environment is well documented, and generally accepted as an important cause of cladogenesis. Founder dispersal (i.e. long-distance dispersal followed by founder effect speciation) is also frequently invoked as a cause of genetic divergence among lineages, but its role has long been challenged by vicariance biogeographers. Founder dispersal is likely to be common in species that colonize remote habitats by means of rafting (e.g. seahorses), as long-distance dispersal events are likely to be rare and subsequent additional recruitment from the source habitat is unlikely. In the present study, the relative importance of vicariance and founder dispersal as causes of cladogenesis in a circumglobally distributed seahorse lineage was investigated using molecular dating. A phylogeny was reconstructed using sequence data from mitochondrial and nuclear markers, and the well-documented closure of the Central American seaway was used as a primary calibration point to test whether other bifurcations in the phylogeny could also have been the result of vicariance events. The feasibility of three other vicariance events was explored: a) the closure of the Indonesian Seaway, resulting in sister lineages associated with the Indian Ocean and West Pacific, respectively; b) the closure of the Tethyan Seaway, resulting in sister lineages associated with the Indo-Pacific and Atlantic Ocean, respectively, and c) continental break-up during the Mesozoic followed by spreading of the Atlantic Ocean, resulting in pairs of lineages with amphi-Atlantic distribution patterns.</p> <p>Results</p> <p>Comparisons of pairwise genetic distances among the seahorse species hypothesized to have diverged as a result of the closure of the Central American Seaway with those of published teleost sequences having the same distribution patterns show that the seahorses were among the last to diverge. This suggests that their cladogenesis was associated with the final closure of this seaway. Although two other divergence events in the phylogeny could potentially have arisen as a result of the closures of the Indonesian and Tethyan seaways, respectively, the timing of the majority of bifurcations in the phylogeny differed significantly from the dates of vicariance events suggested in the literature. Moreover, several divergence events that resulted in the same distribution patterns of lineages at different positions in the phylogeny did not occur contemporaneously. For that reason, they cannot be the result of the same vicariance events, a result that is independent of molecular dating.</p> <p>Conclusion</p> <p>Interpretations of the cladogenetic events in the seahorse phylogeny based purely on vicariance biogeographic hypotheses are problematic. We conclude that the evolution of the circumglobally distributed seahorse lineage was strongly influenced by founder dispersal, and suggest that this mode of speciation may be particularly important in marine organisms that lack a pelagic dispersal phase and instead disperse by means of rafting.</p

    Genomic Fingerprints of Palaeogeographic History: The Tempo and Mode of Rift Tectonics Across Tropical Africa Has Shaped the Diversification of the Killifish Genus Nothobranchius (Teleostei: Cyprinodontiformes)

    Get PDF
    This paper reports a phylogeny of the African killifishes (Genus Nothobranchius, Order Cyprinodontiformes) informed by five genetic markers (three nuclear, two mitochondrial) of 80 taxa (seven undescribed and 73 of the 92 recognized species). These short-lived annual fishes occupy seasonally wet habitats in central and eastern Africa, and their distribution coincides largely with the East African Rift System (EARS). The fossil dates of sister clades used to constrain a chronometric tree of all sampled Nothobranchius recovered the origin of the genus at ~13.27 Mya. It was followed by the radiations of six principal clades through the Neogene. An ancestral area estimation tested competing biogeographical hypotheses to constrain the ancestral origin of the genus to the Nilo-Sudan Ecoregion, which seeded a mid-Miocene dispersal event into the Coastal ecoregion, followed closely (~10 Mya) by dispersals southward across the Mozambique coastal plain into the Limpopo Ecoregion. Extending westwards across the Tanzanian plateau, a pulse of radiations through the Pliocene were associated with dispersals and fragmentation of wetlands across the Kalahari and Uganda Ecoregions. We interpret this congruence of drainage rearrangements with dispersals and cladogenic events of Nothobranchius to reflect congruent responses to recurrent uplift and rifting. The coevolution of these freshwater fishes and wetlands is attributed to ultimate control by tectonics, as the EARS extended southwards during the Neogene. Geobiological consilience of the combined evidence supports a tectonic hypothesis for the evolution of Nothobranchius

    Are characiform Fishes Gondwanan in Origin? Insights from a Time-Scaled Molecular Phylogeny of the Citharinoidei (Ostariophysi: Characiformes)

    Full text link
    Fishes of the order Characiformes are a diverse and economically important teleost clade whose extant members are found exclusively in African and Neotropical freshwaters. Although their transatlantic distribution has been primarily attributed to the Early Cretaceous fragmentation of western Gondwana, vicariance has not been tested with temporal information beyond that contained in their fragmentary fossil record and a recent time-scaled phylogeny focused on the African family Alestidae. Because members of the suborder Citharinoidei constitute the sister lineage to the entire remaining Afro-Neotropical characiform radiation, we inferred a time-calibrated molecular phylogeny of citharinoids using a popular Bayesian approach to molecular dating in order to assess the adequacy of current vicariance hypotheses and shed light on the early biogeographic history of characiform fishes. Given that the only comprehensive phylogenetic treatment of the Citharinoidei has been a morphology-based analysis published over three decades ago, the present study also provided an opportunity to further investigate citharinoid relationships and update the evolutionary framework that has laid the foundations for the current classification of the group. The inferred chronogram is robust to changes in calibration priors and suggests that the origins of citharinoids date back to the Turonian (ca 90 Ma) of the Late Cretaceous. Most modern citharinoid genera, however, appear to have originated and diversified much more recently, mainly during the Miocene. By reconciling molecular-clock- with fossilbased estimates for the origins of the Characiformes, our results provide further support for the hypothesis that attributes the disjunct distribution of the order to the opening of the South Atlantic Ocean. The striking overlap in tempo of diversification and biogeographic patterns between citharinoids and the African-endemic family Alestidae suggests that their evolutionary histories could have been strongly and similarly influenced by Miocene geotectonic events that modified the landscape and produced the drainage pattern of Central Africa seen today
    corecore