617 research outputs found
Spin Readout Techniques of the Nitrogen-Vacancy Center in Diamond
The diamond nitrogen-vacancy (NV) center is a leading platform for quantum
information science due to its optical addressability and room-temperature spin
coherence. However, measurements of the NV center's spin state typically
require averaging over many cycles to overcome noise. Here, we review several
approaches to improve the readout performance and highlight future avenues of
research that could enable single-shot electron-spin readout at room
temperature.Comment: 21 pages, 7 figure
Optical patterning of trapped charge in nitrogen-doped diamond
The nitrogen-vacancy (NV) centre in diamond is emerging as a promising
platform for solid-state quantum information processing and nanoscale
metrology. Of interest in these applications is the manipulation of the NV
charge, which can be attained by optical excitation. Here we use two-color
optical microscopy to investigate the dynamics of NV photo-ionization, charge
diffusion, and trapping in type-1b diamond. We combine fixed-point laser
excitation and scanning fluorescence imaging to locally alter the concentration
of negatively charged NVs, and to subsequently probe the corresponding
redistribution of charge. We uncover the formation of spatial patterns of
trapped charge, which we qualitatively reproduce via a model of the interplay
between photo-excited carriers and atomic defects. Further, by using the NV as
a probe, we map the relative fraction of positively charged nitrogen upon
localized optical excitation. These observations may prove important to
transporting quantum information between NVs or to developing
three-dimensional, charge-based memories
Electrically driven optical interferometry with spins in silicon carbide
Interfacing solid-state defect electron spins to other quantum systems is an
ongoing challenge. The ground-state spin's weak coupling to its environment
bestows excellent coherence properties, but also limits desired drive fields.
The excited-state orbitals of these electrons, however, can exhibit stronger
coupling to phononic and electric fields. Here, we demonstrate electrically
driven coherent quantum interference in the optical transition of single,
basally oriented divacancies in commercially available 4H silicon carbide. By
applying microwave frequency electric fields, we coherently drive the
divacancy's excited-state orbitals and induce Landau-Zener-Stuckelberg
interference fringes in the resonant optical absorption spectrum. Additionally,
we find remarkably coherent optical and spin subsystems enabled by the basal
divacancy's symmetry. These properties establish divacancies as strong
candidates for quantum communication and hybrid system applications, where
simultaneous control over optical and spin degrees of freedom is paramount.Comment: 17 pages, 4 figure
Pump-Enhanced Continuous-Wave Magnetometry using Nitrogen-Vacancy Ensembles
Ensembles of nitrogen-vacancy centers in diamond are a highly promising
platform for high-sensitivity magnetometry, whose efficacy is often based on
efficiently generating and monitoring magnetic-field dependent infrared
fluorescence. Here we report on an increased sensing efficiency with the use of
a 532-nm resonant confocal cavity and a microwave resonator antenna for
measuring the local magnetic noise density using the intrinsic nitrogen-vacancy
concentration of a chemical-vapor deposited single-crystal diamond. We measure
a near-shot-noise-limited magnetic noise floor of 200 pT/
spanning a bandwidth up to 159 Hz, and an extracted sensitivity of
approximately 3 nT/, with further enhancement limited by the
noise floor of the lock-in amplifier and the laser damage threshold of the
optical components. Exploration of the microwave and optical pump-rate
parameter space demonstrates a linewidth-narrowing regime reached by virtue of
using the optical cavity, allowing an enhanced sensitivity to be achieved,
despite an unoptimized collection efficiency of <2 %, and a low
nitrogen-vacancy concentration of about 0.2 ppb.Comment: 10 pages and 5 figure
Nitrogen-vacancy singlet manifold ionization energy
The singlet states of the negatively-charged nitrogen-vacancy centers in
diamond play a key role in its optical spin control and readout. In this work,
the hitherto unknown ionization energy of the singlet is measured
experimentally and found to be between 1.91-2.25 eV. This is obtained by
analyzing photoluminescence measurements incorporating spin control and NV
charge state differentiation, along with simulations based on the
nitrogen-vacancy's master equation. This work establishes a protocol for a more
accurate estimate of this ionization energy, which can possibly lead to
improved read-out methods
- …