123,919 research outputs found

    The lysine methyltransferase SMYD3 interacts with hepatitis C virus NS5A and is a negative regulator of viral particle production

    Get PDF
    Hepatitis C virus (HCV) is a considerable global health and economic burden. The HCV nonstructural protein (NS) 5A is essential for the viral life cycle. The ability of NS5A to interact with different host and viral proteins allow it to manipulate cellular pathways and regulate viral processes, including RNA replication and virus particle assembly. As part of a proteomic screen, we identified several NS5A-binding proteins, including the lysine methyltransferase SET and MYND domain containing protein 3 (SMYD3). We confirmed the interaction in the context of viral replication by co-immunoprecipitation and co-localization studies. Mutational analyses revealed that the MYND-domain of SMYD3 and domain III of NS5A are required for the interaction. Overexpression of SMYD3 resulted in decreased intracellular and extracellular virus titers, whilst viral RNA replication remained unchanged, suggesting that SMYD3 negatively affects HCV particle production in a NS5A-dependent manner. (C) 2014 The Authors. Published by Elsevier Inc

    Constructing warm inflationary model in brane-antibrane system

    Get PDF
    Recently, various observational data predict a possibility that inflation may naturally occur in a warm region. In this scenario, radiation is produced during the inflation epoch and reheating is avoided. The main question arises that what is the origin of warm inflation in 4D universe? We answer to this question in brane-antibrane system. We propose a model that allows all cosmological parameters like the scale factor a, the Hubble parameter H and phantom energy density depend on the equation of state parameter in transverse dimension between two branes. Thus, an enhancement in these parameters can be a signature of some evolutions in extra dimension. In our model, the expansion of 4D universe is controlled by the separation distance between branes and evolves from non-phantom phase to phantom one. Consequently, phantom-dominated era of the universe accelerates and ends up in big-rip singularity. Also, we show that as the tachyon potential increases, the effect of interaction between branes on the 4D universe expansion becomes systematically more effective, because at higher energies there exists more channels for flowing energy from extra dimension to other four dimensions. Finally, we test our model against WMAP and Planck data and obtain the ripping time. According to experimental data, N50N\simeq 50 case leads to ns0.96n_{s}\simeq 0.96, where \emph{N} and nsn_{s} are the number e-folds and the spectral index respectively. This standard case may be found in 0.01<RTensorscalar<0.220.01 < R_{Tensor-scalar } < 0.22, where RTensorscalarR_{Tensor-scalar } is the tensor-scalar ratio. At this point, the finite time that Big Rip singularity occurs is trip=33(Gyr)t_{rip}=33(Gyr).Comment: 16 pages, 3 figures, Accepted in Phys. Lett. B. arXiv admin note: text overlap with arXiv:0708.3233 by other author

    Transcriptomic characterization of two major Fusarium resistance quantitative trait loci (QTLs), Fhb1 and Qfhs.ifa-5A, identifies novel candidate genes

    Get PDF
    Fusarium head blight, caused by Fusarium graminearum, is a devastating disease of wheat. We developed near-isogenic lines (NILs) differing in the two strongest known F. graminearum resistance quantitative trait loci (QTLs), Qfhs.ndsu-3BS (also known as resistance gene Fhb1) and Qfhs.ifa-5A, which are located on the short arm of chromosome 3B and on chromosome 5A, respectively. These NILs showing different levels of resistance were used to identify transcripts that are changed significantly in a QTL-specific manner in response to the pathogen and between mock-inoculated samples. After inoculation with F. graminearum spores, 16 transcripts showed a significantly different response for Fhb1 and 352 for Qfhs.ifa-5A. Notably, we identified a lipid transfer protein which is constitutively at least 50-fold more abundant in plants carrying the resistant allele of Qfhs.ifa-5A. In addition to this candidate gene associated with Qfhs.ifa-5A, we identified a uridine diphosphate (UDP)-glycosyltransferase gene, designated TaUGT12887, exhibiting a positive difference in response to the pathogen in lines harbouring both QTLs relative to lines carrying only the Qfhs.ifa-5A resistance allele, suggesting Fhb1 dependence of this transcript. Yet, this dependence was observed only in the NIL with already higher basal resistance. The complete cDNA of TaUGT12887 was reconstituted from available wheat genomic sequences, and a synthetic recoded gene was expressed in a toxin-sensitive strain of Saccharomyces cerevisiae. This gene conferred deoxynivalenol resistance, albeit much weaker than that observed with the previously characterized barley HvUGT13248

    More Meta-Stable Brane Configurations without D6-Branes

    Full text link
    We describe the intersecting brane configurations, consisting of NS-branes, D4-branes(and anti-D4-branes), in type IIA string theory corresponding to the meta-stable nonsupersymmetric vacua of N=1 SU(N_c) x SU(N_c') x SU(N_c'') gauge theory with bifundamentals. By adding the orientifold 4-plane to these brane configurations, we also discuss the meta-stable brane configurations for other gauge theory with bifundamentals. Furthermore, we study the intersecting brane configurations corresponding to the nonsupersymmetric meta-stable vacua of other gauge theory with bifundamentals, by adding the orientifold 6-plane.Comment: 46 pp; 16 figures; improved the introduction and to appear in NP

    The effect of host structure on the selectivity and mechanism of supramolecular catalysis of Prins cyclizations.

    Get PDF
    The effect of host structure on the selectivity and mechanism of intramolecular Prins reactions is evaluated using K12Ga4L6 tetrahedral catalysts. The host structure was varied by modifying the structure of the chelating moieties and the size of the aromatic spacers. While variation in chelator substituents was generally observed to affect changes in rate but not selectivity, changing the host spacer afforded differences in efficiency and product diastereoselectivity. An extremely high number of turnovers (up to 840) was observed. Maximum rate accelerations were measured to be on the order of 105, which numbers among the largest magnitudes of transition state stabilization measured with a synthetic host-catalyst. Host/guest size effects were observed to play an important role in host-mediated enantioselectivity

    Meta-Stable Brane Configurations with Seven NS5-Branes

    Full text link
    We present the intersecting brane configurations consisting of NS-branes, D4-branes(and anti D4-branes) and O6-plane, of type IIA string theory corresponding to the meta-stable nonsupersymmetric vacua in four dimensional N=1 supersymmetric SU(N_c) x SU(N_c') x SU(N_c'') gauge theory with a symmetric tensor field, a conjugate symmetric tensor field and bifundamental fields. We also describe the intersecting brane configurations of type IIA string theory corresponding to the nonsupersymmetric meta-stable vacua in the above gauge theory with an antisymmetric tensor field, a conjugate symmetric tensor field, eight fundamental flavors and bifundamentals. These brane configurations consist of NS-branes, D4-branes(and anti D4-branes), D6-branes and O6-planes.Comment: 34pp, 9 figures; Improved the draft and added some footnotes; Figure 1, footnote 7 and captions of Figures 7,8,9 added or improved and to appear in CQ

    The effect of organic and conventional management on the yield and quality of wheat grown in a long-term field trial

    Get PDF
    The performance of winter wheat was evaluated under organic (ORG) and conventional (CON) management systems in the Nafferton Factorial Systems Comparison (NFSC) long-term field trial. The present study separates out the crop protection and fertility management components of organic and conventional production systems using two levels each of crop protection (CP) and fertility management (FM). The experimental design provided the four combinations of crop protection and fertility (CON-CP CONFM, CON-CP ORG-FM, ORG-CP CON-FM and ORG-CP ORG-FM) to evaluate their effects on yield, quality (protein content and hectolitre weight) and disease levels during the period 2004–2008. The conventional management system (CON-CP CON-FM) out-yielded the organic management system (ORG-CP ORG-FM) in all years by an average of 3.1 t ha−1, i.e. 7.9 t ha−1 vs. 4.8 t ha−1. Fertility management was the key factor identified limiting both yield and grain protein content in the ORG management system. The CON-FM produced on average a 3% higher protein content than ORG-FM in all years (12.5% vs. 9.7%). However the ORG-CP system produced higher protein levels than CON-CP although it was only in 2008 that this was statistically significant. In contrast to protein content it was ORG-FM which produced a higher hectolitre weight than the CON-FM system (71.6 kg hl−1 vs. 71.0 kg hl−1). The clear and significant differences in yield and protein content between the ORG-FM and CON-FM systems suggest a limited supply of available N in the organic fertility management system which is also supported by the significant interaction effect of the preceding crop on protein content. The pRDA showed that although fertilisation had the greatest effect on yield, quality and disease there was also a considerable effect of crop protection and the environment

    A study of composite material damage induced by laser shock waves

    Get PDF
    A laser shock wave technique has been used to study the damage tolerance of T800/M21 CFRP (Carbon Fiber Reinforced Polymer) composite material with different lay_ups. Different levels of damage have been created according to various laser irradiation conditions. Several characterization methods such as Optical Microscopy, X-ray Radiography, or Interferometric Confocal Microscopy have been used to quantify these defects. The nature of the defects induced by the shock wave propagation has been studied. The sensitivity of the composite material damage to the shock conditions has been shown and quantified. Moreover, the experimental results gathered with each technique have been compared to each other and it leads to a better understanding of the CFRP behavior under high dynamic loading. These original results have enabled the definition of a specific damage criterion for CFRP under dynamic loading
    corecore