109 research outputs found

    Performance Analyses of Graph Heuristics and Selected Trajectory Metaheuristics on Examination Timetable Problem

    Get PDF
    Examination timetabling problem is hard to solve due to its NP-hard nature, with a large number of constraints having to be accommodated. To deal with the problem effectually, frequently heuristics are used for constructing feasible examination timetable while meta-heuristics are applied for improving the solution quality. This paper presents the performances of graph heuristics and major trajectory metaheuristics or S-metaheuristics for addressing both capacitated and un-capacitated examination timetabling problem. For constructing the feasible solution, six graph heuristics are used. They are largest degree (LD), largest weighted degree (LWD), largest enrolment degree (LE), and three hybrid heuristic with saturation degree (SD) such as SD-LD, SD-LE, and SD-LWD. Five trajectory algorithms comprising of tabu search (TS), simulated annealing (SA), late acceptance hill climbing (LAHC), great deluge algorithm (GDA), and variable neighborhood search (VNS) are employed for improving the solution quality. Experiments have been tested on several instances of un-capacitated and capacitated benchmark datasets, which are Toronto and ITC2007 dataset respectively. Experimental results indicate that, in terms of construction of solution of datasets, hybridizing of SD produces the best initial solutions. The study also reveals that, during improvement, GDA, SA, and LAHC can produce better quality solutions compared to TS and VNS for solving both benchmark examination timetabling datasets

    Operational Research in Education

    Get PDF
    Operational Research (OR) techniques have been applied, from the early stages of the discipline, to a wide variety of issues in education. At the government level, these include questions of what resources should be allocated to education as a whole and how these should be divided amongst the individual sectors of education and the institutions within the sectors. Another pertinent issue concerns the efficient operation of institutions, how to measure it, and whether resource allocation can be used to incentivise efficiency savings. Local governments, as well as being concerned with issues of resource allocation, may also need to make decisions regarding, for example, the creation and location of new institutions or closure of existing ones, as well as the day-to-day logistics of getting pupils to schools. Issues of concern for managers within schools and colleges include allocating the budgets, scheduling lessons and the assignment of students to courses. This survey provides an overview of the diverse problems faced by government, managers and consumers of education, and the OR techniques which have typically been applied in an effort to improve operations and provide solutions

    Solving Multiple Timetabling Problems at Danish High Schools

    Get PDF

    Combining Monte-Carlo and hyper-heuristic methods for the multi-mode resource-constrained multi-project scheduling problem

    Get PDF
    Multi-mode resource and precedence-constrained project scheduling is a well-known challenging real-world optimisation problem. An important variant of the problem requires scheduling of activities for multiple projects considering availability of local and global resources while respecting a range of constraints. A critical aspect of the benchmarks addressed in this paper is that the primary objective is to minimise the sum of the project completion times, with the usual makespan minimisation as a secondary objective. We observe that this leads to an expected different overall structure of good solutions and discuss the effects this has on the algorithm design. This paper presents a carefully-designed hybrid of Monte-Carlo tree search, novel neighbourhood moves, memetic algorithms, and hyper-heuristic methods. The implementation is also engineered to increase the speed with which iterations are performed, and to exploit the computing power of multicore machines. Empirical evaluation shows that the resulting information-sharing multi-component algorithm significantly outperforms other solvers on a set of “hidden” instances, i.e. instances not available at the algorithm design phase

    Recent Evolutionary Algorithm Variants for Combinatorial Optimization Problem

    Get PDF
    The evolutionary algorithm has been extensively used to solve a range of combinatorial optimization problems. The adaptability of evolutionary algorithm mechanisms provides diverse approaches to handle combinatorial optimization challenges. This survey paper aims to comprehensively review the recent evolutionary algorithm variants in addressing combinatorial optimization problems. Research works published from the year 2018 to 2022 are identified in terms of problem representation and evolutionary strategies adopted. The mechanisms and strategies used in evolutionary algorithms to address different types of combinatorial optimization problems are discovered. Two main aspects are used to classify the evolutionary algorithm variants: population-based and evolutionary strategies (variation and replacement). It is observed that the hybrid evolutionary algorithm is mostly applied in addressing the problems. Hybridization in evolutionary algorithm mechanisms such as initialization methods, local searches, specific design operators, and self-adaptive parameters enhance the algorithm’s performance. Other metaheuristic approaches such as genetic algorithm, differential evolution algorithm, particle swarm optimization, and ant colony optimization are still preferable to address combinatorial optimization problems. Challenges and opportunities of evolutionary algorithms in combinatorial optimization problems are included for further exploration in the field of optimization research

    An Assignment Problem and Its Application in Education Domain: A Review and Potential Path

    Get PDF
    This paper presents a review pertaining to assignment problem within the education domain, besides looking into the applications of the present research trend, developments, and publications. Assignment problem arises in diverse situations, where one needs to determine an optimal way to assign n subjects to m subjects in the best possible way.With that, this paper classified assignment problems into two, which are timetabling problem and allocation problem. The timetabling problem is further classified into examination, course, and school timetabling problems, while the allocation problem is divided into student-project allocation, new student allocation, and space allocation problems. Furthermore, the constraints, which are of hard and soft constraints, involved in the said problems are briefly elaborated.In addition, this paper presents various approaches to address various types of assignment problem. Moreover, direction and potential paths of problem solving based on the latest trend of approaches are also highlighted.As such, this review summarizes and records a comprehensive survey regarding assignment problem within education domain, which enhances one's understanding concerning the varied types of assignment problems, along with various approaches that serve as solution

    Search methodologies for examination timetabling

    Get PDF
    Working with examination timetabling is an extremely challenging task due to the difficulty of finding good quality solutions. Most of the studies in this area rely on improvement techniques to enhance the solution quality after generating an initial solution. Nevertheless, the initial solution generation itself can provide good solution quality even though the ordering strategies often using graph colouring heuristics, are typically quite simple. Indeed, there are examples where some of the produced solutions are better than the ones produced in the literature with an improvement phase. This research concentrates on constructive approaches which are based on squeaky wheel optimisation i.e. the focus is upon finding difficult examinations in their assignment and changing their position in a heuristic ordering. In the first phase, the work is focused on the squeaky wheel optimisation approach where the ordering is permutated in a block of examinations in order to find the best ordering. Heuristics are alternated during the search as each heuristic produces a different value of a heuristic modifier. This strategy could improve the solution quality when a stochastic process is incorporated. Motivated by this first phase, a squeaky wheel optimisation concept is then combined with graph colouring heuristics in a linear form with weights aggregation. The aim is to generalise the constructive approach using information from given heuristics for finding difficult examinations and it works well across tested problems. Each parameter is invoked with a normalisation strategy in order to generalise the specific problem data. In the next phase, the information obtained from the process of building an infeasible timetable is used. The examinations that caused infeasibility are given attention because, logically, they are hard to place in the timetable and so they are treated first. In the adaptive decomposition strategy, the aim is to automatically divide examinations into difficult and easy sets so as to give attention to difficult examinations. Within the easy set, a subset called the boundary set is used to accommodate shuffling strategies to change the given ordering of examinations. Consequently, the graph colouring heuristics are employed on those constructive approaches and it is shown that dynamic ordering is an effective way to permute the ordering. The next research chapter concentrates on the improvement approach where variable neighbourhood search with great deluge algorithm is investigated using various neighbourhood orderings and initialisation strategies. The approach incorporated with a repair mechanism in order to amend some of infeasible assignment and at the same time aiming to improve the solution quality
    corecore