757,987 research outputs found
Preliminary frameworks and models for telework maturity within organisations
This paper is a preliminary step to assess the feasibility of telework for any given organisation. We posit two qualitative frames of telework to define the additional, digital referential platforms that exist with regard to work today: abstraction and conceptualisation. To communicate research within this field we utilise a language taxonomy derived out of a review of the relevant literature. Furthermore, we propose a transformer model to serve as a means to i) interpret quantitative aspects of telework such
as metrics and KPIs and ii) inform stakeholder decisions with regard to appropriate telework
configurations for their respective company
Preliminary frameworks and models for telework maturity within organisations
This paper is a preliminary step to assess the feasibility of telework for any given organisation. We posit two qualitative frames of telework to define the additional, digital referential platforms that exist with regard to work today: abstraction and conceptualisation. To communicate research within this field we utilise a language taxonomy derived out of a review of the relevant literature. Furthermore, we
propose a transformer model to serve as a means to i) interpret quantitative aspects of telework such as metrics and KPIs and ii) inform stakeholder decisions with regard to appropriate telework configurations for their respective company
Performance Modeling and Evaluation of Distributed Deep Learning Frameworks on GPUs
Deep learning frameworks have been widely deployed on GPU servers for deep
learning applications in both academia and industry. In training deep neural
networks (DNNs), there are many standard processes or algorithms, such as
convolution and stochastic gradient descent (SGD), but the running performance
of different frameworks might be different even running the same deep model on
the same GPU hardware. In this study, we evaluate the running performance of
four state-of-the-art distributed deep learning frameworks (i.e., Caffe-MPI,
CNTK, MXNet, and TensorFlow) over single-GPU, multi-GPU, and multi-node
environments. We first build performance models of standard processes in
training DNNs with SGD, and then we benchmark the running performance of these
frameworks with three popular convolutional neural networks (i.e., AlexNet,
GoogleNet and ResNet-50), after that, we analyze what factors that result in
the performance gap among these four frameworks. Through both analytical and
experimental analysis, we identify bottlenecks and overheads which could be
further optimized. The main contribution is that the proposed performance
models and the analysis provide further optimization directions in both
algorithmic design and system configuration.Comment: Published at DataCom'201
Frameworks, models, and case studies
This thesis focuses on models of conceptual change in science and philosophy. In particular, I developed a new bootstrapping methodology for studying conceptual change, centered around the formalization of several popular models of conceptual change and the collective assessment of their improved formal versions via nine evaluative dimensions. Among the models of conceptual change treated in the thesis are Carnap’s explication, Lakatos’ concept-stretching, Toulmin’s conceptual populations, Waismann’s open texture, Mark Wilson’s patches and facades, Sneed’s structuralism, and Paul Thagard’s conceptual revolutions.
In order to analyze and compare the conception of conceptual change provided by these different models, I rely on several historical reconstructions of episodes of scientific conceptual change. The historical episodes of scientific change that figure in this work include the emergence of the morphological concept of fish in biological taxonomies, the development of scientific conceptions of temperature, the Church-Turing thesis and related axiomatizations of effective calculability, the history of the concept of polyhedron in 17th and 18th century mathematics, Hamilton’s invention of the quaternions, the history of the pre-abstract group concepts in 18th and 19th century mathematics, the expansion of Newtonian mechanics to viscous fluids forces phenomena, and the chemical revolution. I will also present five different formal and informal improvements of four specific models of conceptual change. I will first present two different improvements of Carnapian explication, a formal and an informal one. My informal improvement of Carnapian explication will consist of a more fine-grained version of the procedure that adds an intermediate, third step to the two steps of Carnapian explication. I will show how this novel three-step version of explication is more suitable than its traditional two-step relative to handle complex cases of explications. My second, formal improvement of Carnapian explication will be a full explication of the concept of explication itself within the theory of conceptual spaces. By virtue of this formal improvement, the whole procedure of explication together with its application procedures and its pragmatic desiderata will be reconceptualized as a precise procedure involving topological and geometrical constraints inside the theory of conceptual spaces. My third improved model of conceptual change will consist of a formal explication of Darwinian models of conceptual change that will make vast use of Godfrey-Smith’s population-based Darwinism for targeting explicitly mathematical conceptual change. My fourth improvement will be dedicated instead to Wilson’s indeterminate model of conceptual change. I will show how Wilson’s very informal framework can be explicated within a modified version of the structuralist model-theoretic reconstructions of scientific theories. Finally, the fifth improved model of conceptual change will be a belief-revision-like logical framework that reconstructs Thagard’s model of conceptual revolution as specific revision and contraction operations that work on conceptual structures.
At the end of this work, a general conception of conceptual change in science and philosophy emerges, thanks to the combined action of the three layers of my methodology. This conception takes conceptual change to be a multi-faceted phenomenon centered around the dynamics of groups of concepts. According to this conception, concepts are best reconstructed as plastic and inter-subjective entities equipped with a non-trivial internal structure and subject to a certain degree of localized holism. Furthermore, conceptual dynamics can be judged from a weakly normative perspective, bound to be dependent on shared values and goals. Conceptual change is then best understood, according to this conception, as a ubiquitous phenomenon underlying all of our intellectual activities, from science to ordinary linguistic practices. As such, conceptual change does not pose any particular problem to value-laden notions of scientific progress, objectivity, and realism. At the same time, this conception prompts all our concept-driven intellectual activities, including philosophical and metaphilosophical reflections, to take into serious consideration the phenomenon of conceptual change. An important consequence of this conception, and of the analysis that generated it, is in fact that an adequate understanding of the dynamics of philosophical concepts is a prerequisite for analytic philosophy to develop a realistic and non-idealized depiction of itself and its activities
Frameworks for Protocol Implementation
This paper reports on the development of a catalogue of frameworks for protocol implementation. Frameworks are software structures developed for a specific application domain, which can be re-used in the implementation of various different concrete systems in this domain. By using frameworks we aim at increasing the effectiveness of the protocol implementation process. We assume that whenever protocols are directly implemented from their specifications one may be able to increase the correctness and the speed of the implementation process, and the maintainability of the resulting system. We argue that frameworks should match the concepts underlying the techniques used for specifying protocols. Consequently, we couple the development of frameworks for protocol implementation to the investigation of the different alternative design models for protocol specification. This paper presents the approach we have been using to develop frameworks, and illustrates this approach with an example of framework
- …