8,493 research outputs found

    Mercury in Florida Bay fish: spatial distribution of elevated concentrations and possible linkages to Everglades restoration

    Get PDF
    Health advisories are now posted in northern Florida Bay, adjacent to the Everglades, warning of high mercury concentrations in some species of gamefish. Highest concentrations of mercury in both forage fish and gamefish have been measured in the northeastern corner of Florida Bay, adjacent to the dominant freshwater inflows from the Everglades. Thirty percent of spotted seatrout (Cynoscion nebulosus Cuvier, 1830) analyzed exceeded Florida’s no consumption level of 1.5 μg g−1 mercury in this area. We hypothesized that freshwater draining the Everglades served as the major source of methylmercury entering the food web supporting gamefish. A lack of correlation between mercury concentrations and salinity did not support this hypothesis, although enhanced bioavailability of methylmercury is possible as freshwater is diluted with estuarine water. Stable isotopes of carbon, nitrogen, and sulfur were measured in fish to elucidate the shared pathways of methylmercury and nutrient elements through the food web. These data support a benthic source of both methylmercury and nutrient elements to gamefish within the eastern bay, as opposed to a dominant watershed source. Ecological characteristics of the eastern bay, including active redox cycling in near-surface sediments without excessive sulfide production are hypothesized to promote methylmercury formation and bioaccumulation in the benthos. Methylmercury may then accumulate in gamefish through a food web supported by benthic microalgae, detritus, pink shrimp (Farfantepenaeus duorarum Burkenroad, 1939), and other epibenthic feeders. Uncertainty remains as to the relative importance of watershed imports of methylmercury from the Everglades and in situ production in the bay, an uncertainty that needs resolution if the effects of Everglades restoration on mercury levels in fish are to be modeled and managed

    Mercury Cycling in Sulfur Rich Sediment From The Brunswick Estuary

    Get PDF
    Mercury is potentially toxic to the environment. Mercury is absorbed into anaerobic sediments of surface waters, which may be converted to methylmercury, a toxic form of mercury that bio-accumulates in aquatic biota. Sources of mercury in the environment vary, but the production of methylmercury is common in sulfur-rich sediments containing mercury. In such environments, sulfur reducing bacteria (SRB) produce methylmercury as a by-product. The metabolic process uses energy from the reduction of sulfate to sulfide. This study focuses on determining the methylmercury production and release potential from sulfur-rich sediments extracted from different areas of the Brunswick Estuary. Previous studies note considerable levels of mercury in the Brunswick Estuary due to a local super fund site. Water and sediment samples were collected from six different sites to feed microcosms. The design measures the potential of the sediments to produce methylmercury. Microcosms were operated under anaerobic conditions to determine if sediments produced methylmercury under extreme conditions (e.g. low dissolved oxygen, low oxidation-reduction potential, and highly productive environment). This may seasonally exist in different zones of the estuary. Results revealed that sediments have the potential to reduce sulfate under anaerobic conditions. In the microcosms, sulfate concentrations rapidly decreased from values as high as 290 mg/L to practically 0 mg/L. This suggests that sediments provide an adequate environment to support SRB activity, which may result in methylmercury production. Further, results revealed that the production potential of methylmercury varies across different zones of the estuary. Precise methylmercury concentrations collected from the different sites are currently being evaluated. Due to the environmental conditions that prevail in the estuary, its proximity to a mercury super fund site, and its accessibility for fishing activities, it is crucial to further assess the methylmercury formation in this area

    Methylmercury Production in Two Northern Fen Peatlands

    Get PDF
    Northern peatlands provide conditions favourable for sulphate reducing bacteria, microorganisms responsible for producing methylmercury, an aquatic pollutant. An expected climate driven shift from moss- to sedge-dominance may alter mercury biogeochemistry. Observations from a moss-dominated poor fen and sedge-dominated intermediate fen were used to compare methylmercury to assess if contrasting plant communities, nutrients status and/or hydrologic regime control production. Chapter 2 compared porewater methylmercury and ancillary chemistry across two Northern Ontario fens. The lower water table, greater dissolved organic carbon, and lower pH in the poor fen resulted in 3.1 times greater methylmercury. Chapter 3, riparian zones in intermediate fen were evaluated to see if groundwater nutrient supply controlled methylmercury production and transport. Rather than groundwater supply, riparian zones with lower and greater water table fluctuations resulted in greater available sulphate and enhanced methylmercury. The proximity (≤ 2 m) of riparian zones to stream waters facilitated methylmercury transport to surface waters

    Long-term exposure to methylmercury and psychiatric symptoms in residents of Minamata, Japan

    Get PDF
    Introduction: It is well-known that prenatal or postnatal exposure to methylmercury can produce neurological signs in adults and children, exemplified by a case of large-scale poisoning in Minamata, Japan, in the 1950s. However, evidence regarding whether pre- or postnatal exposure to methylmercury causes psychiatric symptoms (e.g., impairment of intelligence and mood and behavioral dysfunction) is still limited-excluding cases of fetal Minamata disease patients. Methods: We evaluated the effects of pre- or postnatal exposure to methylmercury on psychiatric symptoms using data derived from a 1971 population-based survey in Minamata and neighboring communities. We adopted residential areas as an exposure indicator and psychiatric symptoms as the outcome. Then, we estimated the adjusted prevalence odds ratio (POR) and confidence interval (Cl) of psychiatric symptoms in relation to residential area. Results: There were 904 participants in Minamata (high exposure area), 1700 in Goshonoura (middle exposure area), and 913 in Ariake (low exposure area). Compared to the Ariake area, participants in the Minamata area manifested psychiatric symptoms more frequently: PORs for impairment of intelligence and mood and behavioral dysfunction were 5.2 (95% Cl: 3.7-7.3) and 4.4 (95% Cl: 2.9-6.7), respectively. Furthermore, participants with psychiatric symptoms in the Minamata area more frequently had neurological signs. Peaks in prevalence of psychiatric symptoms occurred around age 20 and in older age adults in the area. These findings did not change when we excluded those who had been officially certified as Minamata disease patients by that time. Conclusions: The present study suggests a relationship between pre- or postnatal exposure to methylmercury and psychiatric symptoms among the general population in Minamata even after excluding officially certified patients

    Glutathione-Mediated Neuroprotection Against Methylmercury Neurotoxicity in Cortical Culture is Dependent on MRP1

    Get PDF
    Methylmercury (MeHg) exposure at high concentrations poses significant neurotoxic threat to humans worldwide. The present study investigated the mechanisms of glutathione-mediated attenuation of MeHg neurotoxicity in primary cortical culture. MeHg (5 μM) caused depletion of mono- and disulfide glutathione in neuronal, glial and mixed cultures. Supplementation with exogenous glutathione, specifically glutathione monoethyl ester (GSHME) protected against the MeHg induced neuronal death. MeHg caused increased reactive oxygen species (ROS) formation measured by dichlorodihydrofluorescein (DCF) fluorescence with an early increase at 30 min and a late increase at 6 h. This oxidative stress was prevented by the presence of either GSHME or the free radical scavenger, trolox. While trolox was capable of quenching the ROS, it showed no neuroprotection. Exposure to MeHg at subtoxic concentrations (3 μM) caused an increase in system xc− mediated 14C-cystine uptake that was blocked by the protein synthesis inhibitor, cycloheximide (CHX). Interestingly, blockade of the early ROS burst prevented the functional upregulation of system xc−. Inhibition of multidrug resistance protein-1 (MRP1) potentiated MeHg neurotoxicity and increased cellular MeHg. Taken together, these data suggest glutathione offers neuroprotection against MeHg toxicity in a manner dependent on MRP1-mediated efflux

    Methylmercury varies more than one order of magnitude in commercial European rice

    Get PDF
    P.M. thanks the Royal Thai Government for funding and C.C.B. thanks the School of Natural and Computing Science and PS Analytical for funding.Peer reviewedPostprin

    Mercury speciation in soils of the industrialised Thur River catchment (Alsace, France)

    Get PDF
    Methylmercury (MeHg) and total Hg (THg) concentrations in soil profiles were monitored in the Thur River basin (Alsace, France), where a chlor-alkali plant has been located in the city of Vieux-Thann since the 1930s. Three soil types were studied according to their characteristics and location in the catchment: industrial soil, grassland soil and alluvial soil. Contamination of MeHg and THg in soil was important in the vicinity of the plant, especially in industrial and alluvial soil. Concentrations of MeHg reached 27 ng g1 and 29,000 ng g1 for THg, exceeding the predictable no effect concentration. Significant ecotoxicological risk exists in this area and remedial actions on several soil types are suggested. In each type of soil, MeHg concentrations were highest in topsoil, which decreased with depth. Concentrations of MeHg were negatively correlated with soil organic matter and total S, particularly when MeHg concentrations exceeded 8 ng g1. Under these conditions, MeHg concentrations in soil seemed to be influenced by THg, soil organic matter and total S concentrations. It was found that high MeHg/THg ratios (near 2%) in soil were mainly related to the combined soil environmental conditions such as low THg concentrations, low organic C/N ratios (<11) and relatively low pH (5–5.5). Nevertheless, even when the MeHg/THg ratio was low (0.04%), MeHg and THg concentrations were elevated, up to 13 ng g1 and to 29,000 ng g1, respectively. Thus, both THg and MeHg concentrations should be taken into account to assess potential environmental risks of Hg

    Ensure a Healthy Start: Prevent and Reduce Childhood Exposure to Harmful Chemicals

    Get PDF
    This brief provides an explanation of key concepts and considerations funders will encounter when exploring philanthropic opportunities in a new topic area, and strategies and resources funders can leverage to achieve high impact.It also presents an overview of key issues involved in addressing childhood exposure to harmful chemicals in the U.S., and several strategies for funder engagement. The brief reflects our synthesis of over 20 publications, studies, and websites, as well as several conversations with academics, funders, and nonprofits working in this space. To illustrate how funders can support the identified strategies, we included several organizations that were cited in our review of the literature and/or mentioned by those we consulted. We have not analyzed their impact and cost-effectiveness. As always, we hope this brief helps funders move from good intentions to high impact

    Factors affecting methylmercury biomagnification by a widespread aquatic invertebrate predator, the phantom midge larvae Chaoborus

    Get PDF
    MeHg biomagnification by the phantom midge Chaoborus in relation to MeHg concentrations in their prey and its migratory behavior was investigated in two Canadian Precambrian Shield lakes. Three Chaoborus species with contrasted migratory behavior were collected in a fishless and a fish-inhabited lake. All species accumulated MeHg through their ontogenic development. In the lake inhabited by fish, all instars of Chaoborus punctipennis displayed a marked migratory behavior and were unable to biomagnify MeHg, whereas in the fishless lake, Chaoborus americanus and Chaoborus trivittatus biomagnified MeHg. Reduced biomagnification capacity of C. trivittatus, the coexisting species living with C. americanus, was also ascribed to a progressive vertical segregation with age. Growth dilution, amount and type of prey items or trophic position could not explain the different patterns of biomagnification. Our findings demonstrate that the most common invertebrate predator of temperate planktonic food webs can biomagnify mercury, contrarily to previous reports
    corecore