318,821 research outputs found

    Anisotropic Mesh Adaptation for Image Representation

    Get PDF
    Triangular meshes have gained much interest in image representation and have been widely used in image processing. This paper introduces a framework of anisotropic mesh adaptation (AMA) methods to image representation and proposes a GPRAMA method that is based on AMA and greedy-point removal (GPR) scheme. Different than many other methods that triangulate sample points to form the mesh, the AMA methods start directly with a triangular mesh and then adapt the mesh based on a user-defined metric tensor to represent the image. The AMA methods have clear mathematical framework and provides flexibility for both image representation and image reconstruction. A mesh patching technique is developed for the implementation of the GPRAMA method, which leads to an improved version of the popular GPRFS-ED method. The GPRAMA method can achieve better quality than the GPRFS-ED method but with lower computational cost.Comment: 25 pages, 15 figure

    A fast and robust patient specific Finite Element mesh registration technique: application to 60 clinical cases

    Full text link
    Finite Element mesh generation remains an important issue for patient specific biomechanical modeling. While some techniques make automatic mesh generation possible, in most cases, manual mesh generation is preferred for better control over the sub-domain representation, element type, layout and refinement that it provides. Yet, this option is time consuming and not suited for intraoperative situations where model generation and computation time is critical. To overcome this problem we propose a fast and automatic mesh generation technique based on the elastic registration of a generic mesh to the specific target organ in conjunction with element regularity and quality correction. This Mesh-Match-and-Repair (MMRep) approach combines control over the mesh structure along with fast and robust meshing capabilities, even in situations where only partial organ geometry is available. The technique was successfully tested on a database of 5 pre-operatively acquired complete femora CT scans, 5 femoral heads partially digitized at intraoperative stage, and 50 CT volumes of patients' heads. The MMRep algorithm succeeded in all 60 cases, yielding for each patient a hex-dominant, Atlas based, Finite Element mesh with submillimetric surface representation accuracy, directly exploitable within a commercial FE software

    Incremental Visual-Inertial 3D Mesh Generation with Structural Regularities

    Full text link
    Visual-Inertial Odometry (VIO) algorithms typically rely on a point cloud representation of the scene that does not model the topology of the environment. A 3D mesh instead offers a richer, yet lightweight, model. Nevertheless, building a 3D mesh out of the sparse and noisy 3D landmarks triangulated by a VIO algorithm often results in a mesh that does not fit the real scene. In order to regularize the mesh, previous approaches decouple state estimation from the 3D mesh regularization step, and either limit the 3D mesh to the current frame or let the mesh grow indefinitely. We propose instead to tightly couple mesh regularization and state estimation by detecting and enforcing structural regularities in a novel factor-graph formulation. We also propose to incrementally build the mesh by restricting its extent to the time-horizon of the VIO optimization; the resulting 3D mesh covers a larger portion of the scene than a per-frame approach while its memory usage and computational complexity remain bounded. We show that our approach successfully regularizes the mesh, while improving localization accuracy, when structural regularities are present, and remains operational in scenes without regularities.Comment: 7 pages, 5 figures, ICRA accepte

    Ontology-Based MEDLINE Document Classification

    Get PDF
    An increasing and overwhelming amount of biomedical information is available in the research literature mainly in the form of free-text. Biologists need tools that automate their information search and deal with the high volume and ambiguity of free-text. Ontologies can help automatic information processing by providing standard concepts and information about the relationships between concepts. The Medical Subject Headings (MeSH) ontology is already available and used by MEDLINE indexers to annotate the conceptual content of biomedical articles. This paper presents a domain-independent method that uses the MeSH ontology inter-concept relationships to extend the existing MeSH-based representation of MEDLINE documents. The extension method is evaluated within a document triage task organized by the Genomics track of the 2005 Text REtrieval Conference (TREC). Our method for extending the representation of documents leads to an improvement of 17% over a non-extended baseline in terms of normalized utility, the metric defined for the task. The SVMlight software is used to classify documents
    corecore