318,821 research outputs found
Anisotropic Mesh Adaptation for Image Representation
Triangular meshes have gained much interest in image representation and have
been widely used in image processing. This paper introduces a framework of
anisotropic mesh adaptation (AMA) methods to image representation and proposes
a GPRAMA method that is based on AMA and greedy-point removal (GPR) scheme.
Different than many other methods that triangulate sample points to form the
mesh, the AMA methods start directly with a triangular mesh and then adapt the
mesh based on a user-defined metric tensor to represent the image. The AMA
methods have clear mathematical framework and provides flexibility for both
image representation and image reconstruction. A mesh patching technique is
developed for the implementation of the GPRAMA method, which leads to an
improved version of the popular GPRFS-ED method. The GPRAMA method can achieve
better quality than the GPRFS-ED method but with lower computational cost.Comment: 25 pages, 15 figure
A fast and robust patient specific Finite Element mesh registration technique: application to 60 clinical cases
Finite Element mesh generation remains an important issue for patient
specific biomechanical modeling. While some techniques make automatic mesh
generation possible, in most cases, manual mesh generation is preferred for
better control over the sub-domain representation, element type, layout and
refinement that it provides. Yet, this option is time consuming and not suited
for intraoperative situations where model generation and computation time is
critical. To overcome this problem we propose a fast and automatic mesh
generation technique based on the elastic registration of a generic mesh to the
specific target organ in conjunction with element regularity and quality
correction. This Mesh-Match-and-Repair (MMRep) approach combines control over
the mesh structure along with fast and robust meshing capabilities, even in
situations where only partial organ geometry is available. The technique was
successfully tested on a database of 5 pre-operatively acquired complete femora
CT scans, 5 femoral heads partially digitized at intraoperative stage, and 50
CT volumes of patients' heads. The MMRep algorithm succeeded in all 60 cases,
yielding for each patient a hex-dominant, Atlas based, Finite Element mesh with
submillimetric surface representation accuracy, directly exploitable within a
commercial FE software
Incremental Visual-Inertial 3D Mesh Generation with Structural Regularities
Visual-Inertial Odometry (VIO) algorithms typically rely on a point cloud
representation of the scene that does not model the topology of the
environment. A 3D mesh instead offers a richer, yet lightweight, model.
Nevertheless, building a 3D mesh out of the sparse and noisy 3D landmarks
triangulated by a VIO algorithm often results in a mesh that does not fit the
real scene. In order to regularize the mesh, previous approaches decouple state
estimation from the 3D mesh regularization step, and either limit the 3D mesh
to the current frame or let the mesh grow indefinitely. We propose instead to
tightly couple mesh regularization and state estimation by detecting and
enforcing structural regularities in a novel factor-graph formulation. We also
propose to incrementally build the mesh by restricting its extent to the
time-horizon of the VIO optimization; the resulting 3D mesh covers a larger
portion of the scene than a per-frame approach while its memory usage and
computational complexity remain bounded. We show that our approach successfully
regularizes the mesh, while improving localization accuracy, when structural
regularities are present, and remains operational in scenes without
regularities.Comment: 7 pages, 5 figures, ICRA accepte
Ontology-Based MEDLINE Document Classification
An increasing and overwhelming amount of biomedical information is available in the research literature mainly in the form of free-text. Biologists need tools that automate their information search and deal with the high volume and ambiguity of free-text. Ontologies can help automatic information processing by providing standard concepts and information about the relationships between concepts. The Medical Subject Headings (MeSH) ontology is already available and used by MEDLINE indexers to annotate the conceptual content of biomedical articles. This paper presents a domain-independent method that uses the MeSH ontology inter-concept relationships to extend the existing MeSH-based representation of MEDLINE documents. The extension method is evaluated within a document triage task organized by the Genomics track of the 2005 Text REtrieval Conference (TREC). Our method for extending the representation of documents leads to an improvement of 17% over a non-extended baseline in terms of normalized utility, the metric defined for the task. The SVMlight software is used to classify documents
- …