17,568 research outputs found
Differentiating signals to make biological sense – a guide through databases for MS-based non-targeted metabolomics
Metabolite identification is one of the most challenging steps in metabolomics studies and reflects one of the greatest bottlenecks in the entire workflow. The success of this step determines the success of the entire research, therefore the quality at which annotations are given requires special attention. A variety of tools and resources are available to aid metabolite identification or annotation, offering different and often complementary functionalities. In preparation for this article, almost 50 databases were reviewed, from which 17 were selected for discussion, chosen for their on-line ESI-MS functionality. The general characteristics and functions of each database is discussed in turn, considering the advantages and limitations of each along with recommendations for optimal use of each tool, as derived from experiences encountered at the Centre for Metabolomics and Bioanalysis (CEMBIO) in Madrid. These databases were evaluated considering their utility in non-targeted metabolomics, including aspects such as ID assignment, structural assignment and interpretation of results
mzMatch-ISO: an R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data
<p>Motivation: Stable isotope-labelling experiments have recently gained increasing popularity in metabolomics studies, providing unique insights into the dynamics of metabolic fluxes, beyond the steady-state information gathered by routine mass spectrometry. However, most liquid chromatography–mass spectrometry data analysis software lacks features that enable automated annotation and relative quantification of labelled metabolite peaks. Here, we describe mzMatch–ISO, a new extension to the metabolomics analysis pipeline mzMatch.R.</p>
<p>Results: Targeted and untargeted isotope profiling using mzMatch–ISO provides a convenient visual summary of the quality and quantity of labelling for every metabolite through four types of diagnostic plots that show (i) the chromatograms of the isotope peaks of each compound in each sample group; (ii) the ratio of mono-isotopic and labelled peaks indicating the fraction of labelling; (iii) the average peak area of mono-isotopic and labelled peaks in each sample group; and (iv) the trend in the relative amount of labelling in a predetermined isotopomer. To aid further statistical analyses, the values used for generating these plots are also provided as a tab-delimited file. We demonstrate the power and versatility of mzMatch–ISO by analysing a 13C-labelled metabolome dataset from trypanosomal parasites.</p>
mzMatch-ISO: an R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data
<p>Motivation: Stable isotope-labelling experiments have recently gained increasing popularity in metabolomics studies, providing unique insights into the dynamics of metabolic fluxes, beyond the steady-state information gathered by routine mass spectrometry. However, most liquid chromatography–mass spectrometry data analysis software lacks features that enable automated annotation and relative quantification of labelled metabolite peaks. Here, we describe mzMatch–ISO, a new extension to the metabolomics analysis pipeline mzMatch.R.</p>
<p>Results: Targeted and untargeted isotope profiling using mzMatch–ISO provides a convenient visual summary of the quality and quantity of labelling for every metabolite through four types of diagnostic plots that show (i) the chromatograms of the isotope peaks of each compound in each sample group; (ii) the ratio of mono-isotopic and labelled peaks indicating the fraction of labelling; (iii) the average peak area of mono-isotopic and labelled peaks in each sample group; and (iv) the trend in the relative amount of labelling in a predetermined isotopomer. To aid further statistical analyses, the values used for generating these plots are also provided as a tab-delimited file. We demonstrate the power and versatility of mzMatch–ISO by analysing a 13C-labelled metabolome dataset from trypanosomal parasites.</p>
Metabolomic systems biology of trypanosomes
Metabolomics analysis, which aims at the systematic identification and quantification of all metabolites in biological systems, is emerging as a powerful new tool to identify biomarkers of disease, report on cellular responses to environmental perturbation, and to identify the targets of drugs. Here we discuss recent developments in metabolomic analysis, from the perspective of trypanosome research, highlighting remaining challenges and the most promising areas for future research
Changes in the milk metabolome of the Giant Panda (Ailuropoda melanoleuca) with time after birth: three phases in early lactation and progressive individual differences
Ursids (bears) in general, and giant pandas in particular, are highly altricial at birth. The components of bear milks and their changes with time may be uniquely adapted to nourish relatively immature neonates, protect them from pathogens, and support the maturation of neonatal digestive physiology. Serial milk samples collected from three giant pandas in early lactation were subjected to untargeted metabolite profiling and multivariate analysis. Changes in milk metabolites with time after birth were analysed by Principal Component Analysis, Hierarchical Cluster Analysis and further supported by Orthogonal Partial Least Square-Discriminant Analysis, revealing three phases of milk maturation: days 1–6 (Phase 1), days 7–20 (Phase 2), and beyond day 20 (Phase 3). While the compositions of Phase 1 milks were essentially indistinguishable among individuals, divergences emerged during the second week of lactation. OPLS regression analysis positioned against the growth rate of one cub tentatively inferred a correlation with changes in the abundance of a trisaccharide, isoglobotriose, previously observed to be a major oligosaccharide in ursid milks. Three artificial milk formulae used to feed giant panda cubs were also analysed, and were found to differ markedly in component content from natural panda milk. These findings have implications for the dependence of the ontogeny of all species of bears, and potentially other members of the Carnivora and beyond, on the complexity and sequential changes in maternal provision of micrometabolites in the immediate period after birth
Translating Metabolic Reprogramming into New Targets for Kidney Cancer.
In the age of bioinformatics and with the advent of high-powered computation over the past decade or so the landscape of biomedical research has become radically altered. Whereas a generation ago, investigators would study their "favorite" protein or gene and exhaustively catalog the role of this compound in their disease of interest, the appearance of omics has changed the face of medicine such that much of the cutting edge (and fundable!) medical research now evaluates the biology of the disease nearly in its entirety. Couple this with the realization that kidney cancer is a "metabolic disease" due to its multiple derangements in biochemical pathways [1, 2], and clear cell renal cell carcinoma (ccRCC) becomes ripe for data mining using multiple omics approaches
Inborn Errors of Metabolism in the Era of Untargeted Metabolomics and Lipidomics.
Inborn errors of metabolism (IEMs) are a group of inherited diseases with variable incidences. IEMs are caused by disrupting enzyme activities in specific metabolic pathways by genetic mutations, either directly or indirectly by cofactor deficiencies, causing altered levels of compounds associated with these pathways. While IEMs may present with multiple overlapping symptoms and metabolites, early and accurate diagnosis of IEMs is critical for the long-term health of affected subjects. The prevalence of IEMs differs between countries, likely because different IEM classifications and IEM screening methods are used. Currently, newborn screening programs exclusively use targeted metabolic assays that focus on limited panels of compounds for selected IEM diseases. Such targeted approaches face the problem of false negative and false positive diagnoses that could be overcome if metabolic screening adopted analyses of a broader range of analytes. Hence, we here review the prospects of using untargeted metabolomics for IEM screening. Untargeted metabolomics and lipidomics do not rely on predefined target lists and can detect as many metabolites as possible in a sample, allowing to screen for many metabolic pathways simultaneously. Examples are given for nontargeted analyses of IEMs, and prospects and limitations of different metabolomics methods are discussed. We conclude that dedicated studies are needed to compare accuracy and robustness of targeted and untargeted methods with respect to widening the scope of IEM diagnostics
Opening the toolbox of alternative sampling strategies in clinical routine : a key-role for (LC-)MS/MS
A
- …