127 research outputs found

    Usefulness of mesenchymal cell lines for bone and cartilage regeneration research

    Get PDF
    [Abstract] The unavailability of sufficient numbers of human primary cells is a major roadblock for in vitro repair of bone and/or cartilage, and for performing disease modelling experiments. Immortalized mesenchymal stromal cells (iMSCs) may be employed as a research tool for avoiding these problems. The purpose of this review was to revise the available literature on the characteristics of the iMSC lines, paying special attention to the maintenance of the phenotype of the primary cells from which they were derived, and whether they are effectively useful for in vitro disease modeling and cell therapy purposes. This review was performed by searching on Web of Science, Scopus, and PubMed databases from 1 January 2015 to 30 September 2019. The keywords used were ALL = (mesenchymal AND (“cell line” OR immortal*) AND (cartilage OR chondrogenesis OR bone OR osteogenesis) AND human). Only original research studies in which a human iMSC line was employed for osteogenesis or chondrogenesis experiments were included. After describing the success of the immortalization protocol, we focused on the iMSCs maintenance of the parental phenotype and multipotency. According to the literature revised, it seems that the maintenance of these characteristics is not guaranteed by immortalization, and that careful selection and validation of clones with particular characteristics is necessary for taking advantage of the full potential of iMSC to be employed in bone and cartilage-related research.Xunta de Galicia; R2016/036Deputación da Coruña; BINV-CS/2016Xunta de Galicia; R2014/050Xunta de Galicia; CN2012/142Xunta de Galicia; GPC2014/04

    Cell Reprogramming, IPS Limitations, and Overcoming Strategies in Dental Bioengineering

    Get PDF
    The procurement of induced pluripotent stem cells, or IPS cells, from adult differentiated animal cells has the potential to revolutionize future medicine, where reprogrammed IPS cells may be used to repair disease-affected tissues on demand. The potential of IPS cell technology is tremendous, but it will be essential to improve the methodologies for IPS cell generation and to precisely evaluate each clone and subclone of IPS cells for their safety and efficacy. Additionally, the current state of knowledge on IPS cells advises that research on their regenerative properties is carried out in appropriate tissue and organ systems that permit a safe assessment of the long-term behavior of these reprogrammed cells. In the present paper, we discuss the mechanisms of cell reprogramming, current technical limitations of IPS cells for their use in human tissue engineering, and possibilities to overcome them in the particular case of dental regeneration

    Generation of Mesenchymal Cell Lines Derived from Aged Donors

    Get PDF
    [Abstract] Background: Mesenchymal stromal cells (MSCs) have the capacity for self-renewal and multi-differentiation, and for this reason they are considered a potential cellular source in regenerative medicine of cartilage and bone. However, research on this field is impaired by the predisposition of primary MSCs to senescence during culture expansion. Therefore, the aim of this study was to generate and characterize immortalized MSC (iMSC) lines from aged donors. Methods: Primary MSCs were immortalized by transduction of simian virus 40 large T antigen (SV40LT) and human telomerase reverse transcriptase (hTERT). Proliferation, senescence, phenotype and multi-differentiation potential of the resulting iMSC lines were analyzed. Results: MSCs proliferate faster than primary MSCs, overcome senescence and are phenotypically similar to primary MSCs. Nevertheless, their multi-differentiation potential is unbalanced towards the osteogenic lineage. There are no clear differences between osteoarthritis (OA) and non-OA iMSCs in terms of proliferation, senescence, phenotype or differentiation potential. Conclusions: Primary MSCs obtained from elderly patients can be immortalized by transduction of SV40LT and hTERT. The high osteogenic potential of iMSCs converts them into an excellent cellular source to take part in in vitro models to study bone tissue engineering.This research was carried out thanks to the funding from Rede Galega de Terapia Celular 2016 (R2016/036) and Grupos con Potencial de Crecemento 2020 (ED431B 2020/55) from Xunta de Galicia, Proyectos de Investigación 2017 (PI17/02197) from Instituto de Salud Carlos III and the Biomedical Research Network Center (CIBER). The Biomedical Research Network Center (CIBER) is an initiative from Instituto de Salud Carlos III (ISCIII). MPR and SRF were granted a predoctoral fellowship from Xunta de Galicia and European Union (European Social Fund)Xunta de Galicia; R2016/036Xunta de Galicia; ED431B 2020/5

    Generation and Characterization of Mesenchymal Cell Lines for Osteorchondral Regeneration Research

    Get PDF
    Programa Oficial de Doutoramento en Ciencias da Saúde. 5007V01[Resumo] A rexeneración do óso e da cartilaxe tras sufrir un traumatismo ou unha enfermidade dexenerativa segue sendo un gran desafío clínico. Debido á súa capacidade de auto-renovación e multi-diferenciación, as células mesenquimais estromais (MSC) son unha fonte celular moi prometedora para a rexeneración destes tecidos, pero a investigación neste campo está limitada pola tendencia das MSC á senescencia ao seren expandidas en cultivo. A inmortalización das MSC permítelles superar a senescencia, o que supón un impulso para os avances na investigación. Neste estudo desenvolveuse un método para inmortalizar MSC derivadas de doantes de idade avanzada mediante inoculación centrífuga de dous xenes de inmortalización: o antíxeno T grande do virus de simio 40 (SV40LT) e a transcriptase reversa da telomerase humana (hTERT). As MSC inmortalizadas son fenotipicamente similares ás MSC primarias e son capaces de diferenciarse cara ás tres liñaxes esqueléticas, aínda que se inclinan cara á ruta de diferenciación osteoxénica. Os condrocitos articulares e os sinoviocitos pódense inmortalizar empregando o mesmo método, pero os condrocitos inmortalizados son metabolicamente diferentes dos condrocitos articulares primarios. Estas células poden ser útiles como parte de modelos in vitro de rexeneración dos tecidos articulares ou de enfermidade osteocondral.[Resumen] La regeneración del hueso y el cartílago tras sufrir un traumatismo o una enfermedad degenerativa continúa siendo un gran desafío clínico. Debido a su capacidad de auto-renovación y multi-diferenciación, las células mesenquimales estromales (MSC) son una fuente celular prometedora para la regeneración de estos tejidos, pero la investigación en este campo se ve limitada por la tendencia de las MSC a la senescencia en cultivo. La inmortalización de las MSC les permite superar la senescencia, impulsando así los avances en la investigación. En este estudio, se ha desarrollado un método para inmortalizar MSC derivadas de donantes de edad avanzada mediante inoculación centrífuga de dos genes de inmortalización: el antígeno T grande del virus de simio 40 (SV40LT) y la transcriptasa reversa de la telomerasa humana (hTERT). Las MSC inmortalizadas son fenotípicamente similares a las MSC primarias y son capaces de diferenciarse hacia los tres linajes esqueléticos, aunque tienen tendencia a seguir la ruta de diferenciación osteogénica. Los condrocitos articulares y los sinoviocitos se pueden inmortalizar utilizando el mismo método, pero los condrocitos inmortalizados son metabólicamente diferentes de los condrocitos articulares primarios. Estas células pueden ser útiles como parte de modelos in vitro de regeneración de los tejidos articulares o de enfermedad osteocondral.[Abstract] Regeneration of bone and cartilage after trauma or age-related degenerative diseases remains a major clinical challenge. Due to their self-renewal and multi-differentiation potential, mesenchymal stromal cells (MSCs) are a promising cell source for bone and cartilage regeneration, but research on this field is impaired by MSCs’ predisposition to senescence when culture-expanded. Immortalization of MSCs allows them to bypass senescence, thus boosting the advances in MSC research. In this study, a method has been developed to immortalize MSCs derived from elderly donors by spinoculation of two immortalization genes: simian virus 40 large T antigen (SV40LT) and human telomerase reverse transcriptase (hTERT). Immortalized MSCs are phenotypically similar to primary MSCs and are able to differentiate to the three skeletal lineages, although their multi-differentiation potential is unbalanced towards the osteogenic pathway. Articular chondrocytes and synoviocytes can also be immortalized by the same method, but immortalized chondrocytes are metabolically different from primary articular chondrocytes. These immortalized cells can be useful as part of in vitro models of osteochondral regeneration and disease

    Genetic Analysis of Pituitary Thyrotrope Development

    Full text link
    The pituitary gland produces polypeptide hormones that regulate many functions including growth, lactation, reproduction, metabolism, and the stress response. Pituitary thyrotrope cells produce the heterodimeric glycoprotein hormone thyrotropin, which is critical for stimulating thyroid gland development and production of thyroid hormone. Less is known about the drivers of thyrotrope cell fate than the other specialized cells in this organ. The transcription factor POU1F1 is critical for generation of thyrotropes, somatotropes and lactotropes, and GATA2 is critical for both thyrotropes and gonadotropes. Additional factors are likely involved in driving thyrotrope fate. SV40-immortalized cell lines have been invaluable for studying the regulation of pituitary hormone production. Here I use two established immortalized cell lines to identify epigenomic and gene expression changes that are associated with adoption of the thyrotrope fate. GHF-T1 cells represent a POU1F1-expressing progenitor which does not produce hormones, and TaT1 cells represent a thyrotrope-like line that expresses POU1F1, GATA2 and thyrotropin (TSH). I also developed a novel, genetically engineered mouse line that expresses SV40 in response to cre recombinase, and I used this line to develop novel pituitary cell lines. These cell lines can be used for transcriptome and epigenome studies to understand the development and function of the pituitary gland. I identified the transcription factors and epigenomic changes in chromatin that are associated with thyrotrope differentiation. I generated and integrated genome-wide information about DNA accessibility, histone modifications, POU1F1 binding and RNA expression data to identify regulatory elements and candidate transcriptional regulators. I identified POU1F1 binding sites that are unique to each cell line. POU1F1 binding sites are commonly associated with bZIP factor motifs in GHF-T1 cells and Helix-Turn-Helix or basic Helix-Loop-Helix motifs in TαT1 cells, suggesting classes of transcription factors that may recruit POU1F1 to unique sites. I validated enhancer function of novel elements we mapped near Cga, Pitx1, Gata2, and Tshb by transfection in TαT1 cells. Finally, I confirmed that an enhancer element near Tshb can drive expression in thyrotropes of transgenic mice and demonstrated that GATA2 enhances Tshb expression via this element. These data extend the ENCODE analysis to an organ that is critical for growth and metabolism. This information could be valuable for understanding pituitary development and disease pathogenesis. Targeted oncogenesis is the process of driving tumor formation by engineering transgenic mice that express an oncogene under the control of a cell-type specific promoter. Using CRISPR/Cas9 we inserted a cassette with coding sequences for SV40 T antigens and IRES-GFP into the Rosa26 locus, downstream from a stop sequence flanked by loxP sites: Rosa26 LSL-SV40-GFP . These mice were mated with previously established Prop1-cre and Tshb-cre transgenic lines. The majority of Rosa26 LSL-SV40-GFP/+ ; Prop1-cre and all Rosa26 LSL-SV40-GFP/+ ; Tshb-cre mice developed dwarfism and large tumors by 4 weeks. Prop1-cre-mediated activation of SV40 expression affected cell specification, reducing thyrotrope differentiation and increasing gonadotrope cell fate selection. GFP-positive cells from flow-sorted Rosa26 LSL-SV40GFP/+ LSL-SV40-GFP/+; Prop1-cre and Rosa26 ; Tshb-cre mice express PROP1 and TSH, respectively. Tumors from both of these mouse lines were adapted to growth in cell culture. I established a progenitor-like cell line (PIT-P1) that expresses Sox2 and Pitx1, and a thyrotrope-like cell line (PIT-T1) that expresses Cga and Pou1f1. These studies demonstrate the utility of the novel, Rosa26 LSL-SV40-GFP mouse line for targeted oncogenesis and development of cell lines.PHDGenetics and Genomics PhDUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162910/1/azdaly_1.pd

    Die Evaluation von Seneszenzmarkern in der Kultur von dentalen Follikelvorläuferzellen

    Get PDF
    Für die moderne Zahnmedizin stellen adulte dentale Stammzellen wie dentale Follikelvorläuferzellen (DFVs) vielversprechende zukünftige Behandlungs-alternativen dar, beispielsweise für die Regeneration parodontalen Gewebes. Dafür werden große Mengen von Zellen benötigt, weshalb sie in vitro kultiviert werden müssen. Seneszenz ist dabei ein limitierender Faktor, da sie zu begrenzter Lebenserwartung, Einschränkung der Differenzierungsfähigkeit und verringertem Proliferationspotential führt. Bei DFVs sind Seneszenzmarker bisher noch nicht genau untersucht. Ziel der Arbeit war die Analyse von Seneszenzmarkern, um zu prüfen ob DFVs in hohen Passagen seneszent werden. Dazu wurden Zellmorphologie, Histologie, Telomerlänge, die Expression von Telomerase-assoziiertem TEP1 und osteogene Differenzierung untersucht. Die vorliegende Arbeit liefert neue Erkenntnisse zur Seneszenz von langzeit-kultivierten (bis Passage 18) dentalen Follikelvorläuferzellen. P14 scheint eine kritische Phase bei der Ausbildung seneszenter Tendenzen zu sein. So besitzen DFVs eine veränderte Zellmorphologie, exprimieren seneszenz-assoziierte β-Galaktosidase und zeigen vermindertes osteogenes Differenzierungspotential, sowie reduzierte Expression von TEP1. Telomerverkürzungen sind jedoch tendenziell. Weiterhin lässt sich nach Stammzellmarker-Analyse die Hypothese aufstellen, dass CD146 eine Rolle bei der Entstehung von seneszenten DFVs spielt. DFVs zeigen bis P18 keine stark ausgeprägte, zellzyklushemmende Seneszenz. Der Fokus zukünftiger Studien sollte daher auf Passagen größer 18 liegen. Ebenso sind weiterführende Studien nötig, welche die Bedeutung von CD146 für die Entstehung von Seneszenz untersuchen

    Basal Cell Carcinoma

    Get PDF
    Basal cell carcinoma is the commonest cutaneous malignancy. The last decade has witnessed exponential research which has broadened our understanding of the pathogenesis of basal cell carcinomas. This is also important from a therapeutic point of view as targeted approach to therapy is now being increasingly experimented. Although it is impossible to condense and present all good research in one book, the authors have to be commended on presenting their research on several aspects of basal cell carcinoma in a succinct manner, which shall not only enhance our understanding of, but also hopefully via this open exchange of ideas pave ways for successful targeted therapy of the commonest human cancer

    Ocular Tissue Engineering

    Get PDF
    Tissue engineering emerged back in the 1990s as a new concept to overcome the problem of tissue and organ failure. Over recent decades, there has been incredible progress towards the regeneration of tissues such as bone, heart valves, cartilage, cornea, and retina. In terms of ocular tissue engineering, despite the scientific and strategic incentive for reconstructing ocular tissues, there is also a tremendous need for novel therapeutic options in treating numerous eye diseases related to tissue failure. The aim of this Special Issue is to discuss tissue engineering applications of ocular tissues including but not limited to cornea, retina, and lenses
    corecore