4,081,878 research outputs found

    Estimation of squeeze-film damping and inertial coefficients from experimental free-decay data

    Get PDF
    The results are given for an experimental program concerned with a parametric identification of the damping and inertial coefficients of a cylindrical squeeze-film bearing, through an analysis of transient response data. The results enable the operating range for which a linear model of the squeeze-film is appropriate to be determined. Comparisons are made between the estimated coefficients and theoretical predictions. Presentation is by courtesy of the Council of the Institution of Mechanical Engineers, London

    Thermo-mechanical analysis of additively manufactured hybrid extrusion dies with conformal cooling channels

    Get PDF
    Profile overheating and surface defects during hot aluminum extrusion can occur when seeking higher productivity rates at increased ram speed velocities. The incorporation of cooling channels in the die-design allows overcoming this process limitation by keeping the profile temperature below the melting point of the alloy used [1]. Selective laser melting (SLM) of conformal cooling channels provides, in contrast to conventional manufacturing techniques, the opportunity to place the cooling circuit inside the mandrel of a porthole-die in a well-defined position to the critical bearing region [2]. In the framework of this study, a preliminary numerical investigation on the extrusion process under the assumption of liquid nitrogen cooling is analysed. The results show, that by combining conformal cooling channels with liquid nitrogen as a cooling media high cooling rates, which are well beyond the state of the art of conventional dies, can be achieved. In a hybrid extrusion die set-up, a part of the mandrel, that is additively manufactured, is either joined [3] or directly selective leaser melted onto the conventionally manufactured parts [4]. For a proper implementation in the extrusion process, material testing of the welded joint are needed. Thus, in the current study, tensile tests performed at room temperature for hybrid specimens, partially consisting of conventionally processed tool steel 1.2343 and partially additively manufactured 1.2709, will be presented. Moreover, four different heat treatment sequences of the hybrid specimens will be discussed. In addition, for each configuration, micro-structural images are taken to investigate failure at the bonding region. Finally, an optimal manufacturing sequence for a hybrid die with the described material combination is proposed

    Thermo-hydro-mechanical simulation of a full-scale steel-lined micro-tunnel excavated in the callovooxfordian claystone

    Get PDF
    The paper presents an interpretation of the full-scale ALC1604 in situ heating test carried out in Callovo-Oxfordian claystone (COx) in the Meuse/Haute-Marne underground research laboratory (MHM URL). The MHM URL is a site-specific facility planned to study radioactive waste disposal in the COx. The thermo-hydro-mechanical (THM) behaviour of the host rock is significant for the design of the underground radioactive waste disposal facility and for its long-term safety. When subjected to thermal loading, the Callovo-Oxfordian claystone of low permeability (~10-20-10-21 m2) exhibits a strong pore pressure response that significantly affects the hydraulic and mechanical behaviour of the material. The observations gathered in the in situ test have provided an opportunity to examine the integrated thermo-hydromechanical (THM) response of this sedimentary clay. Coupled THM numerical analyses have been carried out to provide a structured framework for interpretation, and to enhance understanding of THM behaviour of COx. Numerical analyses have been based on a coupled theoretical formulation that incorporates a constitutive law specially developed for this type of material. The law includes a number of features that are relevant for a satisfactory description of the hydromechanical behaviour. By performing the numerical analysis, it has been possible to incorporate anisotropy of material parameters and of in situ stresses. The performance and analysis of the in situ tests have significantly enhanced the understanding of a complex THM problem and have proved the capability of the numerical formulation to provide adequate predictive capacity

    Simultaneous radiation pressure induced heating and cooling of an opto-mechanical resonator

    Full text link
    Cavity opto-mechanics enabled radiation-pressure coupling between optical and mechanical modes of a micro-mechanical resonator gives rise to dynamical backaction, enabling amplification and cooling of mechanical motion. Due to a combination of large mechanical oscillations and necessary saturation of amplification, the noise floor of the opto-mechanical resonator increases, rendering it ineffective at transducing small signals, and thereby cooling another mechanical resonance of the system. Here we show amplification of one mechanical resonance in a micro-mechanical ring resonator while simultaneously cooling another mechanical resonance by exploiting two closely spaced optical whispering gallery mode cavity resonances

    Mechanical resonator

    Get PDF
    A sensor and methods for making and using the same in which a mechanical resonator is employed, comprising a resonator portion for resonating in a fluid without the substantial generation of acoustic waves; and an electrical connection between the resonator portion for oscillating and a source of an input signal; wherein the portion for resonating, the electrical connection or both includes a base material and a performance-tuning material that is different from the base material

    Mechanical MNIST: A benchmark dataset for mechanical metamodels

    Full text link
    Metamodels, or models of models, map defined model inputs to defined model outputs. Typically, metamodels are constructed by generating a dataset through sampling a direct model and training a machine learning algorithm to predict a limited number of model outputs from varying model inputs. When metamodels are constructed to be computationally cheap, they are an invaluable tool for applications ranging from topology optimization, to uncertainty quantification, to multi-scale simulation. By nature, a given metamodel will be tailored to a specific dataset. However, the most pragmatic metamodel type and structure will often be general to larger classes of problems. At present, the most pragmatic metamodel selection for dealing with mechanical data has not been thoroughly explored. Drawing inspiration from the benchmark datasets available to the computer vision research community, we introduce a benchmark data set (Mechanical MNIST) for constructing metamodels of heterogeneous material undergoing large deformation. We then show examples of how our benchmark dataset can be used, and establish baseline metamodel performance. Because our dataset is readily available, it will enable the direct quantitative comparison between different metamodeling approaches in a pragmatic manner. We anticipate that it will enable the broader community of researchers to develop improved metamodeling techniques for mechanical data that will surpass the baseline performance that we show here.Accepted manuscrip

    Spectroscopy of mechanical dissipation in micro-mechanical membranes

    Get PDF
    We measure the frequency dependence of the mechanical quality factor (Q) of SiN membrane oscillators and observe a resonant variation of Q by more than two orders of magnitude. The frequency of the fundamental mechanical mode is tuned reversibly by up to 40% through local heating with a laser. Several distinct resonances in Q are observed that can be explained by coupling to membrane frame modes. Away from the resonances, the background Q is independent of frequency and temperature in the measured range.Comment: 4 pages, 5 figure

    Hybrid Mechanical Systems

    Full text link
    We discuss hybrid systems in which a mechanical oscillator is coupled to another (microscopic) quantum system, such as trapped atoms or ions, solid-state spin qubits, or superconducting devices. We summarize and compare different coupling schemes and describe first experimental implementations. Hybrid mechanical systems enable new approaches to quantum control of mechanical objects, precision sensing, and quantum information processing.Comment: To cite this review, please refer to the published book chapter (see Journal-ref and DOI). This v2 corresponds to the published versio
    corecore