1,950 research outputs found

    A dipole anisotropy of galaxy distribution: Does the CMB rest-frame exist in the local universe?

    Full text link
    The peculiar motion of the Earth causes a dipole anisotropy modulation in the distant galaxy distribution due to the aberration effect. However, the amplitude and angular direction of the effect is not necessarily the same as those of the cosmic microwave background (CMB) dipole anisotropy due to the growth of cosmic structures. In other words exploring the aberration effect may give us a clue to the horizon-scale physics perhaps related to the cosmic acceleration. In this paper we develop a method to explore the dipole angular modulation from the pixelized galaxy data on the sky properly taking into account the covariances due to the shot noise and the intrinsic galaxy clustering contamination as well as the partial sky coverage. We applied the method to the galaxy catalogs constructed from the Sloan Digital Sky Survey (SDSS) Data Release 6 data. After constructing the four galaxy catalogs that are different in the ranges of magnitudes and photometric redshifts to study possible systematics, we found that the most robust sample against systematics indicates no dipole anisotropy in the galaxy distribution. This finding is consistent with the expectation from the concordance Lambda-dominated cold dark matter model. Finally we argue that an almost full-sky galaxy survey such as LSST may allow for a significant detection of the aberration effect of the CMB dipole having the precision of constraining the angular direction to ~ 20 degrees in radius. Assuming a hypothetical LSST galaxy survey, we find that this method can confirm or reject the result implied from a stacked analysis of the kinetic Sunyaev-Zel'dovich effect of X-ray luminous clusters in Kashlinsky et al. (2008,2009) if the implied cosmic bulk flow is not extended out to the horizon.Comment: 20 pages, 11 figures; 24 pages, added a couple of references and 2 figures. Revised version in response to the referee's comments. Resubmitted to Phys. Rev.

    Detection of the Cosmic Far-Infrared Background in the AKARI Deep Field South

    Full text link
    We report the detection and measurement of the absolute brightness and spatial fluctuations of the cosmic infrared background (CIB) with the AKARI satellite. We have carried out observations at 65, 90, 140 and 160 um as a cosmological survey in AKARI Deep Field South (ADF-S), which is one of the lowest cirrus regions with contiguous area on the sky. After removing bright galaxies and subtracting zodiacal and Galactic foregrounds from the measured sky brightness, we have successfully measured the CIB brightness and its fluctuations across a wide range of angular scales from arcminutes to degrees. The measured CIB brightness is consistent with previous results reported from COBE data but significantly higher than the lower limits at 70 and 160 um obtained with the Spitzer satellite from the stacking analysis of 24-um selected sources. The discrepancy with the Spitzer result is possibly due to a new galaxy population at high redshift obscured by hot dust. From power spectrum analysis at 90 um, three components are identified: shot noise due to individual galaxies; Galactic cirrus emission dominating at the largest angular scales of a few degrees; and an additional component at an intermediate angular scale of 10-30 arcminutes, possibly due to galaxy clustering. The spectral shape of the clustering component at 90 um is very similar to that at longer wavelengths as observed by Spitzer and BLAST. Moreover, the color of the fluctuations indicates that the clustering component is as red as Ultra-luminous infrared galaxies (ULIRGs) at high redshift, These galaxies are not likely to be the majority of the CIB emission at 90 um, but responsible for the clustering component. Our results provide new constraints on the evolution and clustering properties of distant infrared galaxies.Comment: 50 pages, 15 figures, submitted to Ap

    New measurements of the cosmic infrared background fluctuations in deep Spitzer/IRAC survey data and their cosmological implications

    Get PDF
    We extend previous measurements of cosmic infrared background (CIB) fluctuations to ~ 1 deg using new data from the Spitzer Extended Deep Survey. Two fields, with depths of ~12 hr/pixel over 3 epochs, are analyzed at 3.6 and 4.5 mic. Maps of the fields were assembled using a self-calibration method uniquely suitable for probing faint diffuse backgrounds. Resolved sources were removed from the maps to a magnitude limit of AB mag ~ 25, as indicated by the level of the remaining shot noise. The maps were then Fourier-transformed and their power spectra were evaluated. Instrumental noise was estimated from the time-differenced data, and subtracting this isolates the spatial fluctuations of the actual sky. The power spectra of the source-subtracted fields remain identical (within the observational uncertainties) for the three epochs indicating that zodiacal light contributes negligibly to the fluctuations. Comparing to 8 mic power spectra shows that Galactic cirrus cannot account for the fluctuations. The signal appears isotropically distributed on the sky as required for an extragalactic origin. The CIB fluctuations continue to diverge to > 10 times those of known galaxy populations on angular scales out to < 1 deg. The low shot noise levels remaining in the diffuse maps indicate that the large scale fluctuations arise from the spatial clustering of faint sources well below the confusion noise. The spatial spectrum of these fluctuations is in reasonable agreement with an origin in populations clustered according to the standard cosmological model (LCDM) at epochs coinciding with the first stars era.Comment: ApJ, to be publishe

    Measuring the luminosity and virial black hole mass dependence of quasar-galaxy clustering at z ~ 0.8

    Full text link
    We study the dependence of quasar clustering on quasar luminosity and black hole mass by measuring the angular overdensity of photometrically selected galaxies imaged by WISE about z \sim 0.8 quasars from SDSS. By measuring the quasar-galaxy cross-correlation function and using photometrically selected galaxies, we achieve a higher density of tracer objects and a more sensitive detection of clustering than measurements of the quasar autocorrelation function. We test models of quasar formation and evolution by measuring the luminosity dependence of clustering amplitude. We find a significant overdensity of WISE galaxies about z \sim 0.8 quasars at 0.2--6.4 h1^{-1} Mpc in projected comoving separation. We find no appreciable increase in clustering amplitude with quasar luminosity across a decade in luminosity, and a power-law fit between luminosity and clustering amplitude gives an exponent of -0.01 ±\pm 0.06 (1 σ\sigma errorbar). We also fail to find a significant relationship between clustering amplitude and black hole mass, although our dynamic range in true mass is suppressed due to the large uncertainties in virial black hole mass estimates. Our results indicate that a small range in host dark matter halo mass maps to a large range in quasar luminosity.Comment: 18 pages, 8 figures. To be published in the Astrophysical Journa

    The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background: I. Limits and Detections

    Get PDF
    The DIRBE on the COBE spacecraft was designed primarily to conduct systematic search for an isotropic CIB in ten photometric bands from 1.25 to 240 microns. The results of that search are presented here. Conservative limits on the CIB are obtained from the minimum observed brightness in all-sky maps at each wavelength, with the faintest limits in the DIRBE spectral range being at 3.5 microns (\nu I_\nu < 64 nW/m^2/sr, 95% CL) and at 240 microns (\nu I_\nu < 28 nW/m^2/sr, 95% CL). The bright foregrounds from interplanetary dust scattering and emission, stars, and interstellar dust emission are the principal impediments to the DIRBE measurements of the CIB. These foregrounds have been modeled and removed from the sky maps. Assessment of the random and systematic uncertainties in the residuals and tests for isotropy show that only the 140 and 240 microns data provide candidate detections of the CIB. The residuals and their uncertainties provide CIB upper limits more restrictive than the dark sky limits at wavelengths from 1.25 to 100 microns. No plausible solar system or Galactic source of the observed 140 and 240 microns residuals can be identified, leading to the conclusion that the CIB has been detected at levels of \nu I_\nu = 25+-7 and 14+-3 nW/m^2/sr at 140 and 240 microns respectively. The integrated energy from 140 to 240 microns, 10.3 nW/m^2/sr, is about twice the integrated optical light from the galaxies in the Hubble Deep Field, suggesting that star formation might have been heavily enshrouded by dust at high redshift. The detections and upper limits reported here provide new constraints on models of the history of energy-releasing processes and dust production since the decoupling of the cosmic microwave background from matter.Comment: 26 pages and 5 figures, accepted for publication in the Astrophyical Journa

    The APM Galaxy Survey III: An Analysis of Systematic Errors in the Angular Correlation Function and Cosmological Implications

    Get PDF
    We present measurements of the angular two-point galaxy correlation function, w(theta)w(theta), from the APM Galaxy Survey. The performance of various estimators of ww is assessed using simulated galaxy catalogues and analytic arguments. Several error analyses show that residual plate-to-plate errors do not bias our estimates of ww by more than 10310^{-3}. Direct comparison between our photometry and external CCD photometry of over 13,000 galaxies from the Las Campanas Deep Redshift Survey shows that the rms error in the APM plate zero points lies in the range 0.04-0.05 magnitudes, in agreement with our previous estimates. We estimate the effects on ww of atmospheric extinction and obscuration by dust in our Galaxy and conclude that these are negligible. We use our best estimates of the systematic errors in the survey to calculate corrected estimates of ww. Deep redshift surveys are used to determine the selection function of the APM Galaxy Survey, and this is applied in Limber's equation to compute how ww scales as a function of limiting magnitude. Our estimates of ww are in excellent agreement with the scaling relation, providing further evidence that systematic errors in the APM survey are small. We explicitly remove large-scale structure by applying filters to the APM galaxy maps and conclude that there is still strong evidence for more clustering at large scales than predicted by the standard scale-invariant cold dark matter (CDM) model. We compare the APM ww and the three dimensional power spectrum derived by inverting ww, with the predictions of scale-invariant CDM models. We show that the observations require Gamma=Omega0hGamma=Omega_0 h in the range 0.2-0.3 and are incompatible with the value Gamma=0.5Gamma=0.5 of the standard CDM model.Comment: 102 pages, plain TeX plus 41 postscript figures. Submitted to MNRA

    Radio galaxies and their magnetic fields out to z <= 3

    Full text link
    We present polarisation properties at 1.41.4\,GHz of two separate extragalactic source populations: passive quiescent galaxies and luminous quasar-like galaxies. We use data from the {\it Wide-Field Infrared Survey Explorer} data to determine the host galaxy population of the polarised extragalactic radio sources. The quiescent galaxies have higher percentage polarisation, smaller radio linear size, and 1.41.4\,GHz luminosity of 6×1021<L1.4<7×10256\times10^{21}<L_{\rm 1.4}<7\times10^{25}\,W Hz1^{-1}, while the quasar-like galaxies have smaller percentage polarisation, larger radio linear size at radio wavelengths, and a 1.41.4\,GHz luminosity of 9×1023<L1.4<7×10289\times10^{23}<L_{\rm 1.4}<7\times10^{28}\,W Hz1^{-1}, suggesting that the environment of the quasar-like galaxies is responsible for the lower percentage polarisation. Our results confirm previous studies that found an inverse correlation between percentage polarisation and total flux density at 1.41.4\,GHz. We suggest that the population change between the polarised extragalactic radio sources is the origin of this inverse correlation and suggest a cosmic evolution of the space density of quiescent galaxies. Finally, we find that the extragalactic contributions to the rotation measures (RMs) of the nearby passive galaxies and the distant quasar-like galaxies are different. After accounting for the RM contributions by cosmological large-scale structure and intervening Mg\,{II} absorbers we show that the distribution of intrinsic RMs of the distant quasar-like sources is at most four times as wide as the RM distribution of the nearby quiescent galaxies, if the distribution of intrinsic RMs of the WISE-Star sources itself is at least several rad m2^{-2} wide.Comment: 12 pages, 8 figures, accepted for publication into MNRA

    Clustering of the Diffuse Infrared Light from the COBE DIRBE maps. I. C(0)C(0) and limits on the near-IR background

    Get PDF
    This paper is devoted to studying the CIB through its correlation properties. We studied the limits on CIB anisotropy in the near IR (1.25, 2.2, and 3.5 \um, or J,  K,  LJ,\;K,\;L) bands at a scale of 0.7\deg\ using the COBE\footnote{ The National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) is responsible for the design, development, and operation of the {\it COBE}. Scientific guidance is provided by the {\it COBE} Science Working Group. GSFC is also responsible for the development of the analysis software and for the production of the mission data sets.} Diffuse Infrared Background Experiment (DIRBE) data. In single bands we obtain the upper limits on the zero-lag correlation signal C(0)=(νδIν)2<3.6×1016,  5.1×1017,  5.7×1018C(0)= \langle(\nu \delta I_\nu)^2\rangle < 3.6 \times 10^{-16},\; 5.1 \times 10^{-17},\; 5.7 \times 10^{-18} \w2m4sr2 for the J,K,LJ,K,L bands respectively. The DIRBE data exhibit a clear color between the various bands with a small dispersion. On the other hand most of the CIB is expected to come from redshifted galaxies and thus should have different color properties. We use this observation to develop a `color subtraction' method of linear combinations of maps at two different bands. This method is expected to suppress the dominant fluctuations from foreground stars and nearby galaxies, while not reducing (or perhaps even amplifying) the extragalactic contribution to C(0)C(0). Applying this technique gives significantly lower and more isotropic limits.Comment: 44 pages postcript; includes 5 tables, 14 figures. Astrophysical Journal, in pres

    The environments of intermediate-redshift QSOs: 0.3 < z < 0.7

    Get PDF
    An angular correlation of low significance (2 sigma) is observed between 0.3 < z < 0.5 QSOs and V < 23 galaxies. Overall, the cross-correlation function between 82 intermediate-redshift (0.3 < z < 0.7), X-ray selected QSOs and V < 24 galaxies is investigated, but no signal is detected for the z > 0.5 QSOs. After converting to an excess of galaxies physically associated with the QSO, this lack of strong correlation is shown to be consistent with the clustering of normal galaxies at the same moderate redshifts. Combined with previous observations, these results imply that the environments of radio-quiet QSOs do not undergo significant evolution with respect to the galaxy population over a wide range of redshifts (0 < z < 1.5). This is in marked contrast to the rapid increase in the richness of the environments associated with radio-loud QSOs over the same redshift range.Comment: 12 pages, 8 figures, MNRAS TeX macro, to appear to MNRA

    Measuring the Angular Correlation Function for Faint Galaxies in High Galactic Latitude Fields

    Get PDF
    A photometric survey of faint galaxies in three high Galactic latitude fields (each 49 arcmin2\sim49~\rm{arcmin^{2}}) with sub-arcsecond seeing is used to study the clustering properties of the faint galaxy population. Multi-color photometry of the galaxies has been obtained to magnitude limits of V25V\sim25, R25R\sim25 and I24I\sim24. Angular correlation analysis is applied to magnitude-limited and color-selected samples of galaxies from the three fields for angular separations ranging from 1012610-126''. General agreement is obtained with other recent studies which show that the amplitude of the angular correlation function, ω(θ)\omega(\theta), is smoothly decreasing as a function of limiting magnitude. The observed decline of ω(θ)\omega(\theta) rules out the viability of ``maximal merger'' galaxy evolution models. Using redshift distributions extrapolated to faint magnitude limits, models of galaxy clustering evolution are calculated and compared to the observed I-band ω(θ)\omega(\theta). Faint galaxies are determined to have correlation lengths and clustering evolution parameters of either r04 h1 Mpcr_{0}\sim4~h^{-1}~Mpc and ϵ01\epsilon\sim0-1; r056 h1 Mpcr_{0}\sim5-6~h^{-1}~Mpc and ϵ>1\epsilon>1; or r023 h1 Mpcr_{0}\sim2-3~h^{-1}~ Mpc and ϵ1.2\epsilon\sim-1.2, assuming q0=0.5q_{0}=0.5 and with h=H0/100 km s1 Mpc1h=H_{0}/100~ km~s^{-1}~Mpc^{-1}. The latter case is for clustering fixed in co-moving coordinates and is probably unrealistic since most local galaxies are observed to be more strongly clustered. No significant variations in the clustering amplitude as a function of color are detected, for all the color-selected galaxy samples considered. (Abridged)Comment: LaTeX (aaspp4.sty), 54 pages including 15 postscript figures; 3 additional uuencoded, gzipped postscript files (~300 kb each) of Figs. 1, 2 and 3 available at ftp://ftp.astro.ubc.ca/pub/woods ; To be published in the Nov. 20, 1997 issue of The Astrophysical Journa
    corecore