69,301 research outputs found

    Multiple Components in Narrow Planetary Rings

    Full text link
    The phase-space volume of regions of regular or trapped motion, for bounded or scattering systems with two degrees of freedom respectively, displays universal properties. In particular, drastic reductions in the volume (gaps) are observed at specific values of a control parameter. Using the stability resonances we show that they, and not the mean-motion resonances, account for the position of these gaps. For more degrees of freedom, exciting these resonances divides the regions of trapped motion. For planetary rings, we demonstrate that this mechanism yields rings with multiple components.Comment: 4 pages, 7 figures (some in colors

    Instabilities in Multi-Planet Circumbinary Systems

    Get PDF
    The majority of the discovered transiting circumbinary planets are located very near the innermost stable orbits permitted, raising questions about the origins of planets in such perturbed environments. Most favored formation scenarios invoke formation at larger distances and subsequent migration to their current locations. Disk-driven planet migration in multi-planet systems is likely to trap planets in mean motion resonances and drive planets inward into regions of larger dynamical perturbations from the binary. We demonstrate how planet-planet resonances can interact with the binary through secular forcing and mean-motion resonances, driving chaos in the system. We show how this chaos will shape the architecture of circumbinary systems, with specific applications to Kepler 47 and the Pluto-Charon system, limiting maximum possible stable eccentricities and indicating what resonances are likely to exist. We are also able to constrain the minimum migration rates of resonant circumbinary planets.Comment: Accepted for publication in MNRA
    • …
    corecore