135,363 research outputs found

    On the relationship between topological and geometric defects

    Full text link
    The study of topology in solids is undergoing a renaissance following renewed interest in the properties of ferroic domain walls as well as recent discoveries regarding topological insulators and skyrmionic lattices. Each of these systems possess a property that is `protected' in a symmetry sense, and is defined rigorously using a branch of mathematics known as topology. In this article we review the formal definition of topological defects as they are classified in terms of homotopy theory, and discuss the precise symmetry-breaking conditions that lead to their formation. We distinguish topological defects from geometric defects, which arise from the details of the stacking or structure of the material but are not protected by symmetry. We provide simple material examples of both topological and geometric defect types, and discuss the implications of the classification on the resulting material properties

    Geometric Knot Spaces and Polygonal Isotopy

    Full text link
    The space of n-sided polygons embedded in three-space consists of a smooth manifold in which points correspond to piecewise linear or ``geometric'' knots, while paths correspond to isotopies which preserve the geometric structure of these knots. The topology of these spaces for the case n = 6 and n = 7 is described. In both of these cases, each knot space consists of five components, but contains only three (when n = 6) or four (when n = 7) topological knot types. Therefore ``geometric knot equivalence'' is strictly stronger than topological equivalence. This point is demonstrated by the hexagonal trefoils and heptagonal figure-eight knots, which, unlike their topological counterparts, are not reversible. Extending these results to the cases n \ge 8 is also discussed.Comment: AMS LaTeX, 23 pages, 14 figures, 1 table; submitted to Journal of Knot Theory and its Ramifications, and to Proceedings of the International Knot Theory Meeting (Knots in Hellas 1998), Delphi, Greece, 7 - 15 August 1998. Also available from http://www.williams.edu/Mathematics/jcalvo/abstract.htm

    Geodesic knots in cusped hyperbolic 3-manifolds

    Full text link
    We consider the existence of simple closed geodesics or "geodesic knots" in finite volume orientable hyperbolic 3-manifolds. Previous results show that at least one geodesic knot always exists [Bull. London Math. Soc. 31(1) (1999) 81-86], and that certain arithmetic manifolds contain infinitely many geodesic knots [J. Diff. Geom. 38 (1993) 545-558], [Experimental Mathematics 10(3) (2001) 419-436]. In this paper we show that all cusped orientable finite volume hyperbolic 3-manifolds contain infinitely many geodesic knots. Our proof is constructive, and the infinite family of geodesic knots produced approach a limiting infinite simple geodesic in the manifold.Comment: This is the version published by Algebraic & Geometric Topology on 19 November 200

    Mathematical Models of Abstract Systems: Knowing abstract geometric forms

    Get PDF
    Scientists use models to know the world. It i susually assumed that mathematicians doing pure mathematics do not. Mathematicians doing pure mathematics prove theorems about mathematical entities like sets, numbers, geometric figures, spaces, etc., they compute various functions and solve equations. In this paper, I want to exhibit models build by mathematicians to study the fundamental components of spaces and, more generally, of mathematical forms. I focus on one area of mathematics where models occupy a central role, namely homotopy theory. I argue that mathematicians introduce genuine models and I offer a rough classification of these models
    • …
    corecore