224,806 research outputs found

    Polymer reinforcement with nanoparticles

    Get PDF
    The Polymers and Composites research group belongs to the Materials Science and Engineering and Chemical Engineering Department of the University Carlos III of Madrid, Spain. Its objective is the development and characterization of polymeric materials, focussed in their reinforcement through the dispersion of nanoparticles. Following this method, very small additions of nanoreinforcements usually improve mechanical, electrical and optical properties, as well as the service performance of these materials. The research group is looking for companies interested in applying nanotechnologies to polymers of industrial interest

    Composite structural materials

    Get PDF
    Physical properties of fiber reinforced composites; structural concepts and analysis; manufacturing; reliability; and life prediction are subjects of research conducted to determine the long term integrity of composite aircraft structures under conditions pertinent to service use. Progress is reported in (1) characterizing homogeneity in composite materials; (2) developing methods for analyzing composite materials; (3) studying fatigue in composite materials; (4) determining the temperature and moisture effects on the mechanical properties of laminates; (5) numerically analyzing moisture effects; (6) numerically analyzing the micromechanics of composite fracture; (7) constructing the 727 elevator attachment rib; (8) developing the L-1011 engine drag strut (CAPCOMP 2 program); (9) analyzing mechanical joints in composites; (10) developing computer software; and (11) processing science and technology, with emphasis on the sailplane project

    Panels of eco-friendly materials for architectural acoustics

    Full text link
    [EN] The objective of this work is to study the acoustic and mechanical properties of environmentally friendly materials manufactured through the process of resin infusion made from different types of fibres: some are biodegradable obtained from renewable resources and others from recycled textile waste. The materials studied are composed of fibres of jute, hemp, coconut, biaxial linen and textile waste. The modulus of elasticity and the airborne sound insulation are determined through dynamic and acoustic tests, respectively. The behaviour of these innovative materials is compared to some traditional materials commonly used in architectural acoustics. The acoustic study of these environmentally friendly materials is carried out considering them as light elements of a single layer for their application to insulation of walls. The results are compared to plasterboards, considered as the most commonly used light material in buildings for airborne sound insulation. In conclusion, these materials are a real and effective alternative to the traditional composites of synthetic matrices and reinforcements of glass fibres and there is a reduction in the production cost compared to the usual porous synthetic media that have expensive production processes.Fontoba-Ferrándiz, J.; Juliá Sanchis, E.; Crespo, J.; Segura Alcaraz, JG.; Gadea Borrell, JM.; Parres, F. (2020). Panels of eco-friendly materials for architectural acoustics. Journal of Composite Materials. 54(25):3743-3753. https://doi.org/10.1177/0021998320918914S374337535425Yahya, M. N., Sambu, M., Latif, H. A., & Junaid, T. M. (2017). A study of Acoustics Performance on Natural Fibre Composite. IOP Conference Series: Materials Science and Engineering, 226, 012013. doi:10.1088/1757-899x/226/1/012013Putra, A., Or, K. H., Selamat, M. Z., Nor, M. J. M., Hassan, M. H., & Prasetiyo, I. (2018). Sound absorption of extracted pineapple-leaf fibres. Applied Acoustics, 136, 9-15. doi:10.1016/j.apacoust.2018.01.029Dunne, R., Desai, D., & Sadiku, R. (2017). Material characterization of blended sisal-kenaf composites with an ABS matrix. Applied Acoustics, 125, 184-193. doi:10.1016/j.apacoust.2017.03.022Mohanty, A. K., Misra, M., & Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 276-277(1), 1-24. doi:10.1002/(sici)1439-2054(20000301)276:13.0.co;2-wLuckachan, G. E., & Pillai, C. K. S. (2011). Biodegradable Polymers- A Review on Recent Trends and Emerging Perspectives. Journal of Polymers and the Environment, 19(3), 637-676. doi:10.1007/s10924-011-0317-1Belakroum, R., Gherfi, A., Kadja, M., Maalouf, C., Lachi, M., El Wakil, N., & Mai, T. H. (2018). Design and properties of a new sustainable construction material based on date palm fibers and lime. Construction and Building Materials, 184, 330-343. doi:10.1016/j.conbuildmat.2018.06.196Sèbe, G. (2000). Applied Composite Materials, 7(5/6), 341-349. doi:10.1023/a:1026538107200Yates, M. R., & Barlow, C. Y. (2013). Life cycle assessments of biodegradable, commercial biopolymers—A critical review. Resources, Conservation and Recycling, 78, 54-66. doi:10.1016/j.resconrec.2013.06.010Rouison, D., Sain, M., & Couturier, M. (2006). Resin transfer molding of hemp fiber composites: optimization of the process and mechanical properties of the materials. Composites Science and Technology, 66(7-8), 895-906. doi:10.1016/j.compscitech.2005.07.040Sreekumar, P. A., Joseph, K., Unnikrishnan, G., & Thomas, S. (2007). A comparative study on mechanical properties of sisal-leaf fibre-reinforced polyester composites prepared by resin transfer and compression moulding techniques. Composites Science and Technology, 67(3-4), 453-461. doi:10.1016/j.compscitech.2006.08.025Rassmann, S., Reid, R. G., & Paskaramoorthy, R. (2010). Effects of processing conditions on the mechanical and water absorption properties of resin transfer moulded kenaf fibre reinforced polyester composite laminates. Composites Part A: Applied Science and Manufacturing, 41(11), 1612-1619. doi:10.1016/j.compositesa.2010.07.009Vijay, R., & Singaravelu, D. L. (2016). Experimental investigation on the mechanical properties ofCyperus pangoreifibers and jute fiber-based natural fiber composites. International Journal of Polymer Analysis and Characterization, 21(7), 617-627. doi:10.1080/1023666x.2016.1192354Williams, G. I. (2000). Applied Composite Materials, 7(5/6), 421-432. doi:10.1023/a:1026583404899O’Donnell, A., Dweib, M. ., & Wool, R. . (2004). Natural fiber composites with plant oil-based resin. Composites Science and Technology, 64(9), 1135-1145. doi:10.1016/j.compscitech.2003.09.024Tran, P., Graiver, D., & Narayan, R. (2006). Biocomposites synthesized from chemically modified soy oil and biofibers. Journal of Applied Polymer Science, 102(1), 69-75. doi:10.1002/app.22265Liu, Q., & Hughes, M. (2008). The fracture behaviour and toughness of woven flax fibre reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 39(10), 1644-1652. doi:10.1016/j.compositesa.2008.07.008Scarponi, C., Pizzinelli, C. S., Sánchez-Sáez, S., & Barbero, E. (2009). Impact Load Behaviour of Resin Transfer Moulding (RTM) Hemp Fibre Composite Laminates. Journal of Biobased Materials and Bioenergy, 3(3), 298-310. doi:10.1166/jbmb.2009.1040Dahy, H. (2017). Biocomposite materials based on annual natural fibres and biopolymers – Design, fabrication and customized applications in architecture. Construction and Building Materials, 147, 212-220. doi:10.1016/j.conbuildmat.2017.04.079Saba, N., Paridah, M. T., & Jawaid, M. (2015). Mechanical properties of kenaf fibre reinforced polymer composite: A review. Construction and Building Materials, 76, 87-96. doi:10.1016/j.conbuildmat.2014.11.043Senthilkumar, K., Saba, N., Rajini, N., Chandrasekar, M., Jawaid, M., Siengchin, S., & Alotman, O. Y. (2018). Mechanical properties evaluation of sisal fibre reinforced polymer composites: A review. Construction and Building Materials, 174, 713-729. doi:10.1016/j.conbuildmat.2018.04.143Alves, C., Ferrão, P. M. C., Silva, A. J., Reis, L. G., Freitas, M., Rodrigues, L. B., & Alves, D. E. (2010). Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production, 18(4), 313-327. doi:10.1016/j.jclepro.2009.10.022Van Vuure, A. W., Baets, J., Wouters, K., & Hendrickx, K. (2015). Compressive properties of natural fibre composites. Materials Letters, 149, 138-140. doi:10.1016/j.matlet.2015.01.158Galan-Marin, C., Rivera-Gomez, C., & Garcia-Martinez, A. (2016). Use of Natural-Fiber Bio-Composites in Construction versus Traditional Solutions: Operational and Embodied Energy Assessment. Materials, 9(6), 465. doi:10.3390/ma9060465Bogoeva-Gaceva, G., Avella, M., Malinconico, M., Buzarovska, A., Grozdanov, A., Gentile, G., & Errico, M. E. (2007). Natural fiber eco-composites. Polymer Composites, 28(1), 98-107. doi:10.1002/pc.20270Peng, L., Song, B., Wang, J., & Wang, D. (2015). Mechanic and Acoustic Properties of the Sound-Absorbing Material Made from Natural Fiber and Polyester. Advances in Materials Science and Engineering, 2015, 1-5. doi:10.1155/2015/274913Benfratello, S., Capitano, C., Peri, G., Rizzo, G., Scaccianoce, G., & Sorrentino, G. (2013). Thermal and structural properties of a hemp–lime biocomposite. Construction and Building Materials, 48, 745-754. doi:10.1016/j.conbuildmat.2013.07.096Adekomaya, O., Jamiru, T., Sadiku, R., & Huan, Z. (2015). A review on the sustainability of natural fiber in matrix reinforcement – A practical perspective. Journal of Reinforced Plastics and Composites, 35(1), 3-7. doi:10.1177/0731684415611974Kadam, A., Pawar, M., Yemul, O., Thamke, V., & Kodam, K. (2015). Biodegradable biobased epoxy resin from karanja oil. Polymer, 72, 82-92. doi:10.1016/j.polymer.2015.07.002Yan, L., Chouw, N., & Jayaraman, K. (2014). Flax fibre and its composites – A review. Composites Part B: Engineering, 56, 296-317. doi:10.1016/j.compositesb.2013.08.014Wambua, P., Ivens, J., & Verpoest, I. (2003). Natural fibres: can they replace glass in fibre reinforced plastics? Composites Science and Technology, 63(9), 1259-1264. doi:10.1016/s0266-3538(03)00096-4Williams, C., Summerscales, J., & Grove, S. (1996). Resin Infusion under Flexible Tooling (RIFT): a review. Composites Part A: Applied Science and Manufacturing, 27(7), 517-524. doi:10.1016/1359-835x(96)00008-5Modi, D., Correia, N., Johnson, M., Long, A., Rudd, C., & Robitaille, F. (2007). Active control of the vacuum infusion process. Composites Part A: Applied Science and Manufacturing, 38(5), 1271-1287. doi:10.1016/j.compositesa.2006.11.012Corbière-Nicollier, T., Gfeller Laban, B., Lundquist, L., Leterrier, Y., Månson, J.-A. ., & Jolliet, O. (2001). Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics. Resources, Conservation and Recycling, 33(4), 267-287. doi:10.1016/s0921-3449(01)00089-1Del Rey, R., Alba, J., Bertó, L., & Gregori, A. (2017). Small-sized reverberation chamber for the measurement of sound absorption. Materiales de Construcción, 67(328), 139. doi:10.3989/mc.2017.0731

    Effects of fibre orientation and content on the mechanical, dynamic mechanical and thermal expansion properties of multi-layered glass/carbon fibre-reinforced polymer composites

    Full text link
    Multi-layered glass and carbon-reinforced polymer composites may exhibit unique properties comparatively with the benchmark, proven they are being tailored bounded by several requirements. The paper herein approaches issues on the influence of the various contents and orientation of UD carbon fibre constitutive on the mechanical, dynamical and thermal expansion if embedded along with glass fibres in different stacking sequencing within an unsaturated polymer resin. The results show that the architectures with the highest content of carbon fibres (e.g. GF:CF(60:40) 0 and 90 ) provide the best tensile and flexural properties, and behave better under dynamical loading conditions and temperature variations, no matter the orientation directions. In addition, it was shown that a thorough understanding can be attained, with respect to the UD carbon fibre content, and different orientations influence on the overall composite material properties, taking into account the data retrieved from dynamical and thermal expansion runs.Luca Motoc, D.; Ferrándiz Bou, S.; Balart Gimeno, RA. (2015). Effects of fibre orientation and content on the mechanical, dynamic mechanical and thermal expansion properties of multi-layered glass/carbon fibre-reinforced polymer composites. Journal of Composite Materials. 49(10):1211-1221. doi:10.1177/0021998314532151S121112214910Bunsell, A. R., & Harris, B. (1974). Hybrid carbon and glass fibre composites. Composites, 5(4), 157-164. doi:10.1016/0010-4361(74)90107-4Summerscales, J., & Short, D. (1978). Carbon fibre and glass fibre hybrid reinforced plastics. Composites, 9(3), 157-166. doi:10.1016/0010-4361(78)90341-5Kretsis, G. (1987). A review of the tensile, compressive, flexural and shear properties of hybrid fibre-reinforced plastics. Composites, 18(1), 13-23. doi:10.1016/0010-4361(87)90003-6Fu, S.-Y., Lauke, B., Mäder, E., Yue, C.-Y., & Hu, X. (2000). Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 31(10), 1117-1125. doi:10.1016/s1359-835x(00)00068-3Stevanović, M., & Sekulić, D. P. (2003). Macromechanical Characteristics Deduced from Three-Point Flexure Tests on Unidirectional Carbon/Epoxy Composites. Mechanics of Composite Materials, 39(5), 387-392. doi:10.1023/b:mocm.0000003288.75552.cbTsukamoto, H. (2011). A mean-field micromechanical approach to design of multiphase composite laminates. Materials Science and Engineering: A, 528(7-8), 3232-3242. doi:10.1016/j.msea.2010.12.102Grozdanov, A., & Bogoeva-Gaceva, G. (2010). Carbon Fibers/Polyamide 6 Composites Based on Hybrid Yarns. Journal of Thermoplastic Composite Materials, 23(1), 99-110. doi:10.1177/0892705708095994Valenza, A., Fiore, V., & Di Bella, G. (2009). Effect of UD Carbon on the Specific Mechanical Properties of Glass Mat Composites for Marine Applications. Journal of Composite Materials, 44(11), 1351-1364. doi:10.1177/0021998309353215Mujika, F. (2006). On the difference between flexural moduli obtained by three-point and four-point bending tests. Polymer Testing, 25(2), 214-220. doi:10.1016/j.polymertesting.2005.10.006Shenghu Cao, Zhis WU, & Xin Wang. (2009). Tensile Properties of CFRP and Hybrid FRP Composites at Elevated Temperatures. Journal of Composite Materials, 43(4), 315-330. doi:10.1177/0021998308099224DUBOULOZMONNET, F., MELE, P., & ALBEROLA, N. (2005). Glass fibre aggregates: consequences on the dynamic mechanical properties of polypropylene matrix composites. Composites Science and Technology, 65(3-4), 437-443. doi:10.1016/j.compscitech.2004.09.012Kishi, H., Kuwata, M., Matsuda, S., Asami, T., & Murakami, A. (2004). Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites. Composites Science and Technology, 64(16), 2517-2523. doi:10.1016/j.compscitech.2004.05.006Miyagawa, H., Mase, T., Sato, C., Drown, E., Drzal, L. T., & Ikegami, K. (2006). Comparison of experimental and theoretical transverse elastic modulus of carbon fibers. Carbon, 44(10), 2002-2008. doi:10.1016/j.carbon.2006.01.026TANIGUCHI, N., NISHIWAKI, T., HIRAYAMA, N., NISHIDA, H., & KAWADA, H. (2009). Dynamic tensile properties of carbon fiber composite based on thermoplastic epoxy resin loaded in matrix-dominant directions. Composites Science and Technology, 69(2), 207-213. doi:10.1016/j.compscitech.2008.10.002Bosze, E. J., Alawar, A., Bertschger, O., Tsai, Y.-I., & Nutt, S. R. (2006). High-temperature strength and storage modulus in unidirectional hybrid composites. Composites Science and Technology, 66(13), 1963-1969. doi:10.1016/j.compscitech.2006.01.020Pothan, L. A., George, C. N., John, M. J., & Thomas, S. (2009). Dynamic Mechanical and Dielectric Behavior of Banana-Glass Hybrid Fiber Reinforced Polyester Composites. Journal of Reinforced Plastics and Composites, 29(8), 1131-1145. doi:10.1177/0731684409103075Pothan, L. A., Potschke, P., Habler, R., & Thomas, S. (2005). The Static and Dynamic Mechanical Properties of Banana and Glass Fiber Woven Fabric-Reinforced Polyester Composite. Journal of Composite Materials, 39(11), 1007-1025. doi:10.1177/0021998305048737Jakubinek, M. B., Whitman, C. A., & White, M. A. (2009). Negative thermal expansion materials. Journal of Thermal Analysis and Calorimetry, 99(1), 165-172. doi:10.1007/s10973-009-0458-9Ito, T., Suganuma, T., & Wakashima, K. (1999). Journal of Materials Science Letters, 18(17), 1363-1365. doi:10.1023/a:1006694601493Pardini, L. C., & Gregori, M. L. (2010). Modeling elastic and thermal properties of 2.5D carbon fiber C/SiC hybrid matrix composites by homogenization method. Journal of Aerospace Technology and Management, 2(2), 183-194. doi:10.5028/jatm.2010.02026510Tsai, Y. I., Bosze, E. J., Barjasteh, E., & Nutt, S. R. (2009). Influence of hygrothermal environment on thermal and mechanical properties of carbon fiber/fiberglass hybrid composites. Composites Science and Technology, 69(3-4), 432-437. doi:10.1016/j.compscitech.2008.11.012Kia, H. G. (2008). Thermal Expansion of Sheet Molding Compound Materials. Journal of Composite Materials, 42(7), 681-695. doi:10.1177/002199830808859

    Structural integrity of hierarchical composites

    Get PDF
    Interface mechanical problems are of paramount importance in engineering and materials science. Traditionally, due to the complexity of modelling their mechanical behaviour, interfaces are often treated as defects and their features are not explored. In this study, a different approach is illustrated, where the interfaces play an active role in the design of innovative hierarchical composites and are fundamental for their structural integrity. Numerical examples regarding cutting tools made of hierarchical cellular polycrystalline materials are proposed, showing that tailoring of interface properties at the different scales is the way to achieve superior mechanical responses that cannot be obtained using standard material

    Science led vs design led teaching approaches in materials science and engineering for aeronautical engineering students

    Get PDF
    A comparison on teaching styles has been conducted by analysing behavioural, cognitive, developmental, social cognitive and constructivist perspectives of 26 students (higher engineering apprentices). All of those students are in their full-time employment at Broughton factory (Airbus UK) and were comprehensively surveyed at the end of module (ENGF405: Composites and Aeronautical Materials) to quantify their learning experiences. It is generally assumed that design led, in comparison to science led, approach is the most appropriate method for these hands-on engineering professionals. However, presented results are quite interesting because majority of the high achievers have opted for science led approach for their improved learning experiences during the module

    Composite structural materials

    Get PDF
    Progress is reported in studies of constituent materials composite materials, generic structural elements, processing science technology, and maintaining long-term structural integrity. Topics discussed include: mechanical properties of high performance carbon fibers; fatigue in composite materials; experimental and theoretical studies of moisture and temperature effects on the mechanical properties of graphite-epoxy laminates and neat resins; numerical investigations of the micromechanics of composite fracture; delamination failures of composite laminates; effect of notch size on composite laminates; improved beam theory for anisotropic materials; variation of resin properties through the thickness of cured samples; numerical analysis composite processing; heat treatment of metal matrix composites, and the RP-1 and RP2 gliders of the sailplane project

    Comparison of Mechanical Properties of Hemp-Fibre Biocomposites Fabricated with Biobased and Regular Epoxy Resins

    Full text link
    [EN] Bio- and green composites are mainly used in non-structural automotive elements like interior panels and vehicle underpanels. Currently, the use of biocomposites as a worthy alternative to glass fibre-reinforced plastics (GFRPs) in structural applications still needs to be fully evaluated. In the current study, the development of a suited biocomposites started with a thorough review of the available raw materials, including both reinforcement fibres and matrix materials. Based on its specific properties, hemp appeared to be a very suitable fibre. A similar analysis was conducted for the commercially available biobased matrix materials. Greenpoxy 55 (with a biocontent of 55%) and Super Sap 100 (with a biocontent of 37%) were selected and compared with a standard epoxy resin. Tensile and three-point bending tests were conducted to characterise the hemp-based biocomposite.The authors acknowledge financial support from the Spanish Government, Project PID2019-108807RB-I00.Colomer Romero, V.; Rogiest, D.; García Manrique, JA.; Crespo, J. (2020). Comparison of Mechanical Properties of Hemp-Fibre Biocomposites Fabricated with Biobased and Regular Epoxy Resins. Materials. 13(24):1-8. https://doi.org/10.3390/ma13245720181324Mohanty, A. K., Misra, M., & Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 276-277(1), 1-24. doi:10.1002/(sici)1439-2054(20000301)276:13.0.co;2-wLa Mantia, F. P., & Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 42(6), 579-588. doi:10.1016/j.compositesa.2011.01.017Hansen, O., Habermann, C., & Endres, H.-J. (2019). BIO-BASED MATERIALS FOR EXTERIOR APPLICATIONS – PROJECT BIOHYBRIDCAR. Zukunftstechnologien für den multifunktionalen Leichtbau, 189-200. doi:10.1007/978-3-662-58206-0_18Gholampour, A., & Ozbakkaloglu, T. (2019). A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 55(3), 829-892. doi:10.1007/s10853-019-03990-yPatil, N. V., Rahman, M. M., & Netravali, A. N. (2017). «Green» composites using bioresins from agro‐wastes and modified sisal fibers. Polymer Composites, 40(1), 99-108. doi:10.1002/pc.24607Verma, D., & Senal, I. (2019). Natural fiber-reinforced polymer composites. Biomass, Biopolymer-Based Materials, and Bioenergy, 103-122. doi:10.1016/b978-0-08-102426-3.00006-0Adekomaya, O. (2020). Adaption of green composite in automotive part replacements: discussions on material modification and future patronage. Environmental Science and Pollution Research, 27(8), 8807-8813. doi:10.1007/s11356-019-07557-xKim, Y. K., & Chalivendra, V. (2020). Natural fibre composites (NFCs) for construction and automotive industries. Handbook of Natural Fibres, 469-498. doi:10.1016/b978-0-12-818782-1.00014-6Potluri, R., & Chaitanya Krishna, N. (2020). Potential and Applications of Green Composites in Industrial Space. Materials Today: Proceedings, 22, 2041-2048. doi:10.1016/j.matpr.2020.03.218Mann, G. S., Singh, L. P., Kumar, P., & Singh, S. (2018). Green composites: A review of processing technologies and recent applications. Journal of Thermoplastic Composite Materials, 33(8), 1145-1171. doi:10.1177/0892705718816354Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials https://www.astm.org/Standards/D3039https://www.pecepoxy.co.uk/data-sheets/TDS_100_1000_v4.pdfhttp://www.matrix-composites.co.uk/prod-data-sheet/old/greenpoxy-55-ft-uk.pdfCzłonka, S., Strąkowska, A., & Kairytė, A. (2020). The Impact of Hemp Shives Impregnated with Selected Plant Oils on Mechanical, Thermal, and Insulating Properties of Polyurethane Composite Foams. Materials, 13(21), 4709. doi:10.3390/ma13214709Madhu, P., Mavinkere Rangappa, S., Khan, A., Al Otaibi, A., Al‐Zahrani, S. A., Pradeep, S., … Siengchin, S. (2020). Experimental investigation on the mechanical and morphological behavior of Prosopis juliflora bark fibers/E‐glass/carbon fabrics reinforced hybrid polymeric composites for structural applications. Polymer Composites, 41(12), 4983-4993. doi:10.1002/pc.2576
    corecore