22,095 research outputs found

    The role of phase interface energy in martensitic transformations: a lattice Monte-Carlo simulation

    Full text link
    To study martensitic phase transformation we use a micromechanical model based on statistical mechanics. Employing lattice Monte-Carlo simulations and realistic material properties for shape-memory alloys (SMA), we investigate the combined influence of the external stress, temperature, and interface energy between the austenitic and martensitic phase on the transformation kinetics and the effective material compliance. The one-dimensional model predicts well many features of the martensitic transformation that are observed experimentally. Particularly, we study the influence of the interface energy on the transformation width and the effective compliance. In perspective, the obtained results might be helpful for the design of new SMAs for more sensitive smart structures and more efficient damping systems.Comment: 10 pages, 3 figures, 22 reference

    Differential Scanning Calorimetry (DSC) Analyses Of Superelastic And Nonsuperelastic Nickel-Titanium Orthodontic Wires

    Get PDF
    The purpose of this study was to determine the transformation temperatures for the austenitic, martensitic, and rhombohedral (R) structure phases in representative as-received commercial nitinol (NiTi) orthodontic wire alloys, to reconcile discrepancies among recent publications. Specimens were examined by differential scanning calorimetry (DSC) over a temperature range from approximately −170° C to 100° C, with a scanning rate of 10° C per minute. Two different pathways, with the intermediate R structure either absent or present, were observed for the transformation from martensitic to austenitic NiTi, whereas the reverse transformation from austenitic to martensitic NiTi always included the R structure. The enthalpy (ΔH) for the transformation from martensite to austenite ranged from 0.3 to 35 calories per gram. The lowest ΔH value for the nonsuperelastic Nitinol wire is consistent with a largely work-hardened, stable, martensitic microstructure in this product. The DSC results indicate that the transformation processes are broadly similar in superelastic, body-temperature shape-memory, and nonsuperelastic NiTi wires. Differences in bending properties for the NiTi orthodontic wires at room temperature and 37° C are due to the relative proportions of the metallurgical phases in the microstructures

    Advances in martensitic transformations in Cu-based shape memory alloys achieved by in situ neutron and synchrotron X-ray diffraction methods

    Get PDF
    This article deals with the application of several X-ray and neutron diffraction methods to investigate the mechanics of a stress induced martensitic transformation in Cu-based shape memory alloy polycrystals. It puts experimental results obtained by two different research groups on different length scales into context with the mechanics of stress induced martensitic transformation in polycrystalline environment

    <i>In situ</i> observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel

    Get PDF
    To inform the design of superior transformation-induced plasticity (TRIP) steels, it is important to understand what happens at the microstructural length scales. In this study, strain-induced martensitic transformation is studied by in situ digital image correlation (DIC) in a scanning electron microscope. Digital image correlation at submicron length scales enables mapping of transformation strains with high confidence. These are correlated with electron backscatter diffraction (EBSD) prior to and post deformation process to get a comprehensive understanding of the strain-induced transformation mechanism. The results are compared with mathematical models for enhanced prediction of strain-induced martensitic phase transformation

    Correlation between Local Structure Distortions and Martensitic Transformation in Ni-Mn-In alloys

    Full text link
    The local structural distortions arising as a consequence of increasing Mn content in Ni_2Mn_1+xIn_1-x (x=0, 0.3, 0.4, 0.5 and 0.6) and its effect on martensitic transformation have been studied using Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. Using the room temperature EXAFS at the Ni and Mn K-edges in the above compositions, the changes associated with respect to the local structure of these absorbing atoms are compared. It is seen that in the alloys exhibiting martensitic transformation (x0.4x \ge 0.4) there is a significant difference between the Ni-In and Ni-Mn bond lengths even in the austenitic phase indicating atomic volume to be the main factor in inducing martensitic transformation in Ni-Mn-In Heusler alloys.Comment: 8 pages, 2 figure

    Molecular dynamic simulation of a homogeneous bcc -> hcp transition

    Full text link
    We have performed molecular dynamic simulations of a Martensitic bcc->hcp transformation in a homogeneous system. The system evolves into three Martensitic variants, sharing a common nearest neighbor vector along a bcc direction, plus an fcc region. Nucleation occurs locally, followed by subsequent growth. We monitor the time-dependent scattering S(q,t) during the transformation, and find anomalous, Brillouin zone-dependent scattering similar to that observed experimentally in a number of systems above the transformation temperature. This scattering is shown to be related to the elastic strain associated with the transformation, and is not directly related to the phonon response.Comment: 11 pages plus 8 figures (GIF format); to appear in Phys. Rev.

    Local atomic arrangement and martensitic transformation in Ni50_{50}Mn35_{35}In15_{15}: An EXAFS Study

    Full text link
    Heusler alloys that undergo martensitic transformation in ferromagnetic state are of increasing scientific and technological interest. These alloys show large magnetic field induced strains upon martensitic phase change thus making it a potential candidate for magneto-mechanical actuation. The crystal structure of martensite is an important factor that affects both the magnetic anisotropy and mechanical properties of such materials. Moreover, the local chemical arrangement of constituent atoms is vital in determining the overall physical properties. Ni50_{50}Mn35_{35}In15_{15} is one such ferromagnetic shape memory alloy that displays exotic properties like large magnetoresistance at moderate field values. In this work, we present the extended x-ray absorption fine-structure measurements (EXAFS) on the bulk Ni50_{50}Mn35_{35}In15_{15} which reveal the local structural change that occurs upon phase transformation. The change in the bond lengths between different atomic species helps in understanding the type of hybridization which is an important factor in driving such Ni-Mn based systems towards martensitic transformation
    corecore