296,349 research outputs found

    Trophic signatures of marine organisms in the Mediterranean as compared with other ecosystems

    Get PDF
    We compared several large marine ecosystems in terms of species numbers of fishes, sea birds, marine mammals, and cephalopods. We examined how these numbers were distributed by trophic level, from herbivores to top predators. We created group-specific trophic signatures as plots of number of species by trophic level, and used these to identify similarities and discrepancies between taxonomic groups and ecosystems. Preliminary results suggested that trophic signatures are similar for ecosystems previously known to share major features, and different for dissimilar ecosystems. In the Mediterranean, as well as in the other large marine ecosystems, fish clearly dominate the predatory trophic levels above 3.0. Preliminary signatures for cephalopods, marine mammals, and sea birds in the Mediterranean and in the North Sea indicate that these groups are restricted to trophic levels above 3.0, and are represented by many fewer species than are predatory fish. Notably, cephalopods are the only invertebrates present at higher trophic levels (>= 4). Invertebrates other than cephalopods are restricted to trophic levels below 3, with very few exceptions. Trophic signatures appear to be useful tools for better understanding of the roles that different groups of organisms play in different ecosystems. We also applied free-scale network theory to analyse the food web created by trophic links of fishes. Our preliminary results indicated that Mediterranean fishes are, on average, only two trophic links away from each other

    Editorial: Bridging the gap between policy and science in assessing the health status of marine ecosystems

    Get PDF
    Human activities,both established and emerging, increasingly affect the provision of marine ecosystem services that deliver societal and economic benefits. Monitoring the status of marine ecosystems and determining how human activities change their capacity to sustain benefits for society requires an evidence-based Integrated Ecosystem Assessment approach that incorporates knowledge of ecosystem functioning and services).Although,there are diverse methods to assess the status of individual ecosystem components, none assesses the health of marine ecosystems holistically, integrating information from multiple ecosystem components. Similarly,while acknowledging the availability of several methods to measure single pressures and assess their impacts, evaluation of cumulative effects of multiple pressures remains scarce.Therefore,an integrative assessment requires us to first understand the response of marine ecosystems to human activities and their pressures and then develop innovative, cost-effective monitoring tools that enable collection of data to assess the health status of large marine areas. Conceptually, combining this knowledge of effective monitoring methods with cost-benefit analyses will help identify appropriate management measures to improve environmental status economically and efficiently. The European project DEVOTES (DEVelopment Of innovative Tools for understanding marine biodiversity and assessing good Environmental Status) specifically addressed these topics in order to support policymakers and managers in implementing the European Marine Strategy Framework Directive. Here, we synthesize our main innovative findings, placing these within the context of recent wider research, and identifying gaps and the major future challenges

    Bridging the gap between policy and science in assessing the health status of marine ecosystems

    Get PDF
    Human activities, both established and emerging, increasingly affect the provision of marine ecosystem services that deliver societal and economic benefits. Monitoring the status of marine ecosystems and determining how human activities change their capacity to sustain benefits for society requires an evidence-based Integrated Ecosystem Assessment approach that incorporates knowledge of ecosystem functioning and services). Although, there are diverse methods to assess the status of individual ecosystem components, none assesses the health of marine ecosystems holistically, integrating information from multiple ecosystem components. Similarly, while acknowledging the availability of several methods to measure single pressures and assess their impacts, evaluation of cumulative effects of multiple pressures remains scarce. Therefore, an integrative assessment requires us to first understand the response of marine ecosystems to human activities and their pressures and then develop innovative, cost-effective monitoring tools that enable collection of data to assess the health status of large marine areas. Conceptually, combining this knowledge of effective monitoring methods with cost-benefit analyses will help identify appropriate management measures to improve environmental status economically and efficiently. The European project DEVOTES (DEVelopment Of innovative Tools for understanding marine biodiversity and assessing good Environmental Status) specifically addressed t hese topics in order to support policy makers and managers in implementing the European Marine Strategy Framework Directive. Here, we synthesize our main innovative findings, placing these within the context of recent wider research, and identifying gaps and the major future challenges

    Biological processes and links to the physics

    Get PDF
    Analysis of the temporal and spatial variability of biological processes and identification of the main variables that drive the dynamic regime of marine ecosystems is complex. Correlation between physical variables and long-term changes in ecosystems has routinely been identified, but the specific mechanisms involved remain often unclear. Reasons for this could be various: the ecosystem can be very sensitive to the seasonal timing of the anomalous physical forcing; the ecosystem can be contemporaneously influenced by many physical variables and the ecosystem can generate intrinsic variability on climate time scales. Marine ecosystems are influenced by a variety of physical factors, e.g., light, temperature, transport, turbulence. Temperature has a fundamental forcing function in biology, with direct influences on rate processes of organisms and on the distribution of mobile species that have preferred temperature ranges. Light and transport also affect the physiology and distribution of marine organisms. Small-scale turbulence determines encounter between larval fish and their prey and additionally influences the probability of successful pursuit and ingestion. The impact of physical forcing variations on biological processes is studied through long-term observations, process studies, laboratory experiments, retrospective analysis of existing data sets and modelling. This manuscript reviews the diversity of physical influences on biological processes, marine organisms and ecosystems and their variety of responses to physical forcing with special emphasis on the dynamics of zooplankton and fish stocks

    Wildlife and Human Diseases: Symptoms of Endangered Marine Ecosystems & Climate Change

    Get PDF
    The Center for Health and the Global Environment, Harvard Medical School; Wildlife Trust; the Consortium for Conservation Medicine; and the Environmental and Energy Study Institute hosted a Congressional briefing entitled "Wildlife and Human Diseases: Symptoms of Endangered Marine Ecosystems and Climate Change." The marine coastal environment is being subjected to increased pressure from residential, recreational, and commercial development. The combined effects of spills, leaks and accidents associated with oil extraction and transport further weakens coastal ecosystems leaving them vulnerable to injury. These disturbances, in conjunction with new stresses posed by climate change, is adversely affecting the health of marine life. An increase in disease among marine species raises significant concern on the part of scientists, environmental researchers, and policymakers who believe such events herald heightened risk to wildlife and humans

    Last Easter, Summer, Christmas... Fishy Traditions we Have Lost: How Overfishing Impacts you 2

    Get PDF
    This briefing published by OCEAN2012 exposes how overfishing impacts on people's eating habits across Europe. It is part of a series of briefings illustrating the impacts of overfishing on people or marine ecosystems caused by the excess removal of millions of tonnes of marine life every year

    DPSIR-Two decades of trying to develop a unifying framework for marine environmental management?

    Get PDF
    © 2016 Patrício, Elliott, Mazik, Papadopoulou and Smith. Determining and assessing the links between human pressures and state-changes in marine and coastal ecosystems remains a challenge. Although there are several conceptual frameworks for describing these links, the Drivers-Pressures-State change-Impact-Response (DPSIR) framework has been widely adopted. Two possible reasons for this are: either the framework fulfills a major role, resulting from convergent evolution, or the framework is used often merely because it is used often, albeit uncritically. This comprehensive review, with lessons learned after two decades of use, shows that the approach is needed and there has been a convergent evolution in approach for coastal and marine ecosystem management. There are now 25 derivative schemes and a widespread and increasing usage of the DPSIR-type conceptual framework as a means of structuring and analyzing information in management and decision-making across ecosystems. However, there is less use of DPSIR in fully marine ecosystems and even this was mainly restricted to European literature. Around half of the studies are explicitly conceptual, not illustrating a solid case study. Despite its popularity since the early 1990s among the scientific community and the recommendation of several international institutions (e.g., OECD, EU, EPA, EEA) for its application, the framework has notable weaknesses to be addressed. These primarily relate to the long standing variation in interpretation (mainly between natural and social scientists) of the different components (particularly P, S, and I) and to over-simplification of environmental problems such that cause-effect relationships cannot be adequately understood by treating the different DPSIR components as being mutually exclusive. More complex, nested, conceptual models and models with improved clarity are required to assess pressure-state change links in marine and coastal ecosystems. Our analysis shows that, because of its complexity, marine assessment and management constitutes

    How Overfishing Impacts You: The Battle for Ocean Supremacy: The Jellyfish Conquests 1

    Get PDF
    This briefing published by OCEAN2012 exposes how overfishing impacts on the quality of fish people in Europe are eating. It is part of a series of briefings illustrating the impacts of overfishing on people or marine ecosystems caused by the excess removal of millions of tonnes of marine life every year

    The Economic Valuation of Marine Ecosystems

    Get PDF
    In a democratic system, policy makers have to take the preferences of the citizens into account. Since we live in a world with scarce resources, one is asked to make choices regarding the use and management of these resources. In this context, if policy makers decide to invest in the protection of marine ecosystems, less financial resources will be available for other policy areas, for example national health. Moreover, the investment in the protection of marine ecosystems brings along with it the provision of a wide range of benefits to humans though most are not priced in the existing markets – for example climate regulation and provision of habitat for biodiversity. Given that most human activities are priced in one way or other, in some decision contexts, the temptation exists to downplay or ignore these important marine ecosystem benefits on the basis of the non-existence of prices. The simple and simplistic idea in the minds of many policymakers is that a lack of prices is equivalent to a lack of values. Clearly, this is a biased perspective. Against this background, this paper explores the motivation for an economic valuation of this complex resource. The state-of-the-art economic valuation methodologies follow the guidelines proposed by the Millennium Ecosystem Assessment, taking into account the existing scientific knowledge on the functioning of marine ecosystems, marine ecosystem goods and services and its impacts on human welfare. Finally, we critically review some economic valuation studies, arguing that the economic valuation of marine ecosystem services and biodiversity can make sense if and only if important guidelines are observed.Economic Valuation, Marine Ecosystem, Millennium Ecosystem Assessment Approach, Europe
    • 

    corecore