34,916 research outputs found
Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-matter Interactions
Van der Waals (vdW) solids, as a new type of artificial materials that
consist of alternating layers bonded by weak interactions, have shed light on
fascinating optoelectronic device concepts. As a result, a large variety of vdW
devices have been engineered via layer-by-layer stacking of two-dimensional
materials, although shadowed by the difficulties of fabrication. Alternatively,
direct growth of vdW solids has proven as a scalable and swift way, highlighted
by the successful synthesis of graphene/h-BN and transition metal
dichalcogenides (TMDs) vertical heterostructures from controlled vapor
deposition. Here, we realize high-quality organic and inorganic vdW solids,
using methylammonium lead halide (CH3NH3PbI3) as the organic part (organic
perovskite) and 2D inorganic monolayers as counterparts. By stacking on various
2D monolayers, the vdW solids behave dramatically different in light emission.
Our studies demonstrate that h-BN monolayer is a great complement to organic
perovskite for preserving its original optical properties. As a result,
organic/h-BN vdW solid arrays are patterned for red light emitting. This work
paves the way for designing unprecedented vdW solids with great potential for a
wide spectrum of applications in optoelectronics
Spontaneous Octahedral Tilting in the Cubic Inorganic Caesium Halide Perovskites CsSnX and CsPbX (X = F, Cl, Br, I)
The local crystal structures of many perovskite-structured materials deviate
from the average space group symmetry. We demonstrate, from lattice-dynamics
calculations based on quantum chemical force constants, that all the
caesium-lead and caesium-tin halide perovskites exhibit vibrational
instabilities associated with octahedral titling in their high-temperature
cubic phase. Anharmonic double-well potentials are found for zone-boundary
phonon modes in all compounds with barriers ranging from 108 to 512 meV. The
well depth is correlated with the tolerance factor and the chemistry of the
composition, but is not proportional to the imaginary harmonic phonon
frequency. We provide quantitative insights into the thermodynamic driving
forces and distinguish between dynamic and static disorder based on the
potential-energy landscape. A positive band gap deformation (spectral
blueshift) accompanies the structural distortion, with implications for
understanding the performance of these materials in applications areas
including solar cells and light-emitting diodes
A Map of the Inorganic Ternary Metal Nitrides
Exploratory synthesis in novel chemical spaces is the essence of solid-state
chemistry. However, uncharted chemical spaces can be difficult to navigate,
especially when materials synthesis is challenging. Nitrides represent one such
space, where stringent synthesis constraints have limited the exploration of
this important class of functional materials. Here, we employ a suite of
computational materials discovery and informatics tools to construct a large
stability map of the inorganic ternary metal nitrides. Our map clusters the
ternary nitrides into chemical families with distinct stability and
metastability, and highlights hundreds of promising new ternary nitride spaces
for experimental investigation--from which we experimentally realized 7 new Zn-
and Mg-based ternary nitrides. By extracting the mixed metallicity, ionicity,
and covalency of solid-state bonding from the DFT-computed electron density, we
reveal the complex interplay between chemistry, composition, and electronic
structure in governing large-scale stability trends in ternary nitride
materials
Automated computation of materials properties
Materials informatics offers a promising pathway towards rational materials
design, replacing the current trial-and-error approach and accelerating the
development of new functional materials. Through the use of sophisticated data
analysis techniques, underlying property trends can be identified, facilitating
the formulation of new design rules. Such methods require large sets of
consistently generated, programmatically accessible materials data.
Computational materials design frameworks using standardized parameter sets are
the ideal tools for producing such data. This work reviews the state-of-the-art
in computational materials design, with a focus on these automated
frameworks. Features such as structural prototyping and
automated error correction that enable rapid generation of large datasets are
discussed, and the way in which integrated workflows can simplify the
calculation of complex properties, such as thermal conductivity and mechanical
stability, is demonstrated. The organization of large datasets composed of
calculations, and the tools that render them
programmatically accessible for use in statistical learning applications, are
also described. Finally, recent advances in leveraging existing data to predict
novel functional materials, such as entropy stabilized ceramics, bulk metallic
glasses, thermoelectrics, superalloys, and magnets, are surveyed.Comment: 25 pages, 7 figures, chapter in a boo
Hierarchical Visualization of Materials Space with Graph Convolutional Neural Networks
The combination of high throughput computation and machine learning has led
to a new paradigm in materials design by allowing for the direct screening of
vast portions of structural, chemical, and property space. The use of these
powerful techniques leads to the generation of enormous amounts of data, which
in turn calls for new techniques to efficiently explore and visualize the
materials space to help identify underlying patterns. In this work, we develop
a unified framework to hierarchically visualize the compositional and
structural similarities between materials in an arbitrary material space with
representations learned from different layers of graph convolutional neural
networks. We demonstrate the potential for such a visualization approach by
showing that patterns emerge automatically that reflect similarities at
different scales in three representative classes of materials: perovskites,
elemental boron, and general inorganic crystals, covering material spaces of
different compositions, structures, and both. For perovskites, elemental
similarities are learned that reflects multiple aspects of atom properties. For
elemental boron, structural motifs emerge automatically showing characteristic
boron local environments. For inorganic crystals, the similarity and stability
of local coordination environments are shown combining different center and
neighbor atoms. The method could help transition to a data-centered exploration
of materials space in automated materials design.Comment: 22 + 7 pages, 6 + 5 figure
A Most Unusual Zeolite Templating: Cage to Cage Connection of One Guest Molecule
An unusual case of a diquaternary ammonium dication, with large bulky end groups built from the tropane moiety and connected by a C4 methylene chain, is found to reside in zeolite SSZ-35 (STF). The structure of the guest/host product is such that the tropane bicylic entities reside in the shallow cavities of the cages of the STF structure and the C4 methylene chain runs through the 10-ring (~5.5 Ã…) window that connects the cages. This is a most unusual (and energy-intensive) templating of a zeolite structure with the guest molecule spanning two unit cells. The unusual result was found by single crystal studies with the addition of the use of the SQUEEZE program to show a consistent fit for the guest molecule following from measured electron densities in the crystal structure work. These analyses were followed with MAS NMR studies to confirm the integrity of the diquaternary guest molecule in the host sieve. A few comparative diquaternary guest molecules in MFI zeolite are also studied
Graphene-like conjugated pi-bond system in Pb1-xSnxSe
Following the identification of the pi bond in graphene, in this work, a pi
bond constructed through side-to-side overlap of half-filled 6pz orbitals was
observed in a non-carbon crystal of Pb1-xSnxSe (x=0.34) (PSS), a prototype
topological crystalline insulator (TCI) and thermoelectric material with a high
figure-of-merit (ZT). PSS compounds with a rock-salt type cubic crystal
structure was found to consist of sigma bond connected covalent chains of
Pb(Sn)-Se with an additional pi bond that is shared as a conjugated system
among the four nearest neighbor Pb pairs in square symmetry within all (001)
monoatomic layers per cubic unit cell. The pi bond formed with half-filled 6pz
orbitals between Pb atoms is consistent with the calculated results from
quantum chemistry. The presence of pi bonds was identified and verified with
electron energy-loss spectroscopy (EELS) through plasmonic excitations and
electron density (ED) mapping via an inverse Fourier transform of X-ray
diffraction.Comment: 5 pages, 4 figures, to be published in Appl Phys. Let
Recommended from our members
Understanding macroscale functionality of metal halide perovskites in terms of nanoscale heterogeneities
Hybrid metal halide perovskites have shown an unprecedented rise as semiconductor building blocks for solar energy conversion and light-emitting applications. Currently, the field moves empirically towards more and more complex chemical compositions, including mixed halide quadruple cation compounds that allow optical properties to be tuned and show promise for better stability. Despite tremendous progress in the field, there is a need for better understanding of mechanisms of efficiency loss and instabilities to facilitate rational optimization of composition. Starting from the device level and then diving into nanoscale properties, we highlight how structural and compositional heterogeneities affect macroscopic optoelectronic characteristics. Furthermore, we provide an overview of some of the advanced spectroscopy and imaging methods that are used to probe disorder and non-uniformities. A unique feature of hybrid halide perovskite compounds is the propensity for these heterogeneities to evolve in space and time under relatively mild illumination and applied electric fields, such as those found within active devices. This introduces an additional challenge for characterization and calls for application of complimentary probes that can aid in correlating the properties of local disorder with macroscopic function, with the ultimate goal of rationally tailoring synthesis towards optimal structures and compositions
- …