6,469 research outputs found
Spin and valley quantum Hall ferromagnetism in graphene
In a graphene Landau level (LL), strong Coulomb interactions and the fourfold
spin/valley degeneracy lead to an approximate SU(4) isospin symmetry. At
partial filling, exchange interactions can spontaneously break this symmetry,
manifesting as additional integer quantum Hall plateaus outside the normal
sequence. Here we report the observation of a large number of these quantum
Hall isospin ferromagnetic (QHIFM) states, which we classify according to their
real spin structure using temperature-dependent tilted field magnetotransport.
The large measured activation gaps confirm the Coulomb origin of the broken
symmetry states, but the order is strongly dependent on LL index. In the high
energy LLs, the Zeeman effect is the dominant aligning field, leading to real
spin ferromagnets with Skyrmionic excitations at half filling, whereas in the
`relativistic' zero energy LL, lattice scale anisotropies drive the system to a
spin unpolarized state, likely a charge- or spin-density wave.Comment: Supplementary information available at http://pico.phys.columbia.ed
Dimensionless ratios: characteristics of quantum liquids and their phase transitions
Dimensionless ratios of physical properties can characterize low-temperature
phases in a wide variety of materials. As such, the Wilson ratio (WR), the
Kadowaki-Woods ratio and the Wiedemann\--Franz law capture essential features
of Fermi liquids in metals, heavy fermions, etc. Here we prove that the phases
of many-body interacting multi-component quantum liquids in one dimension (1D)
can be described by WRs based on the compressibility, susceptibility and
specific heat associated with each component. These WRs arise due to additivity
rules within subsystems reminiscent of the rules for multi-resistor networks in
series and parallel --- a novel and useful characteristic of multi-component
Tomonaga-Luttinger liquids (TLL) independent of microscopic details of the
systems. Using experimentally realised multi-species cold atomic gases as
examples, we prove that the Wilson ratios uniquely identify phases of TLL,
while providing universal scaling relations at the boundaries between phases.
Their values within a phase are solely determined by the stiffnesses and sound
velocities of subsystems and identify the internal degrees of freedom of said
phase such as its spin-degeneracy. This finding can be directly applied to a
wide range of 1D many-body systems and reveals deep physical insights into
recent experimental measurements of the universal thermodynamics in ultracold
atoms and spins.Comment: 12 pages (main paper), (6 figures
Quantum Hall Effects in Graphene-Based Two-Dimensional Electron Systems
In this article we review the quantum Hall physics of graphene based
two-dimensional electron systems, with a special focus on recent experimental
and theoretical developments. We explain why graphene and bilayer graphene can
be viewed respectively as J=1 and J=2 chiral two-dimensional electron gases
(C2DEGs), and why this property frames their quantum Hall physics. The current
status of experimental and theoretical work on the role of electron-electron
interactions is reviewed at length with an emphasis on unresolved issues in the
field, including assessing the role of disorder in current experimental
results. Special attention is given to the interesting low magnetic field limit
and to the relationship between quantum Hall effects and the spontaneous
anomalous Hall effects that might occur in bilayer graphene systems in the
absence of a magnetic field
Crossovers in Unitary Fermi Systems
Universality and crossover is described for attractive and repulsive
interactions where, respectively, the BCS-BEC crossover takes place and a
ferromagnetic phase transition is claimed. Crossovers are also described for
optical lattices and multicomponent systems. The crossovers, universal
parameters and phase transitions are described within the Leggett and NSR
models and calculated in detail within the Jastrow-Slater approximation. The
physics of ultracold Fermi atoms is applied to neutron, nuclear and quark
matter, nuclei and electrons in solids whenever possible. Specifically, the
differences between optical lattices and cuprates is discussed w.r.t.
antiferromagnetic, d-wave superfluid phases and phase separation.Comment: 50 pages, 15 figures. Contribution to Lecture Notes in Physics
"BCS-BEC crossover and the Unitary Fermi Gas" edited by W. Zwerge
Quantum Hall Physics - hierarchies and CFT techniques
The fractional quantum Hall effect, being one of the most studied phenomena
in condensed matter physics during the past thirty years, has generated many
groundbreaking new ideas and concepts. Very early on it was realized that the
zoo of emerging states of matter would need to be understood in a systematic
manner. The first attempts to do this, by Haldane and Halperin, set an agenda
for further work which has continued to this day. Since that time the idea of
hierarchies of quasiparticles condensing to form new states has been a pillar
of our understanding of fractional quantum Hall physics. In the thirty years
that have passed since then, a number of new directions of thought have
advanced our understanding of fractional quantum Hall states, and have extended
it in new and unexpected ways. Among these directions is the extensive use of
topological quantum field theories and conformal field theories, the
application of the ideas of composite bosons and fermions, and the study of
nonabelian quantum Hall liquids. This article aims to present a comprehensive
overview of this field, including the most recent developments.Comment: added section on experimental status, 59 pages+references, 3 figure
Topological phase transitions in small mesoscopic chiral p-wave superconductors
Spin-triplet chiral p-wave superconductivity is typically described by a
two-component order parameter, and as such is prone to unique emergent effects
when compared to the standard single-component superconductors. Here we present
the equilibrium phase diagram for small mesoscopic chiral p-wave
superconducting disks in the presence of magnetic field, obtained by solving
the microscopic Bogoliubov-de Gennes equations self-consistently. In the
ultra-small limit, the cylindrically-symmetric giant-vortex states are the
ground state of the system. However, with increasing sample size, the
cylindrical symmetry is broken as the two components of the order parameter
segregate into domains, and the number of fragmented domain walls between them
characterizes the resulting states. Such domain walls are topological defects
unique for the p-wave order, and constitute a dominant phase in the mesoscopic
regime. Moreover, we find two possible types of domain walls, identified by
their chirality-dependent interaction with the edge states
- …