84,868 research outputs found
Inactivation of SAM-methyltransferase is the mechanism of attenuation of a historic louse borne typhus vaccine strain
Louse borne typhus (also called epidemic typhus) was one of man's major scourges, and epidemics of the disease can be reignited when social, economic, or political systems are disrupted. The fear of a bioterrorist attack using the etiologic agent of typhus, Rickettsia prowazekii, was a reality. An attenuated typhus vaccine, R. prowazekii Madrid E strain, was observed to revert to virulence as demonstrated by isolation of the virulent revertant Evir strain from animals which were inoculated with Madrid E strain. The mechanism of the mutation in R. prowazekii that affects the virulence of the vaccine was not known. We sequenced the genome of the virulent revertant Evir strain and compared its genome sequence with the genome sequences of its parental strain, Madrid E. We found that only a single nucleotide in the entire genome was different between the vaccine strain Madrid E and its virulent revertant strain Evir. The mutation is a single nucleotide insertion in the methyltransferase gene (also known as PR028) in the vaccine strain that inactivated the gene. We also confirmed that the vaccine strain E did not cause fever in guinea pigs and the virulent revertant strain Evir caused fever in guinea pigs. We concluded that a single nucleotide insertion in the methyltransferase gene of R. prowazekii attenuated the R. prowazekii vaccine strain E. This suggested that an irreversible insertion or deletion mutation in the methyl transferase gene of R. prowazekii is required for Madrid E to be considered a safe vaccine
A constitutive model for analyzing martensite formation in austenitic steels deforming at high strain rates
This study presents a constitutive model for steels exhibiting SIMT, based on previous seminal works, and the corresponding methodology to estimate their parameters. The model includes temperature effects in the phase transformation kinetics, and in the softening of each solid phase through the use of a homogenization technique. The model was validated with experimental results of dynamic tensile tests on AISI 304 sheet steel specimens, and their predictions correlate well with the experimental evidence in terms of macroscopic stress–strain curves and martensite volume fraction formed at high strain rates. The work shows the value of considering temperature effects in the modeling of metastable austenitic steels submitted to impact conditions. Regarding most of the works reported in the literature on SIMT, modeling of the martensitic transformation at high strain rates is the distinctive feature of the present paper.The researchers of the University Carlos III of Madrid are indebted to the Comunidad Autónoma de Madrid (Project CCG10-UC3M/DPI-5596)) and to the Ministerio de Ciencia e Innovación de España (Project DPI/2008-06408) for the financial support received which allowed conducting part of this work. The authors express their thanks to Mr. Philippe and Mr. Tobisch from the company Zwick for the facilities provided to perform the tensile tests at high strain rates
A constitutive model for analyzing martensite formation in austenitic steels deforming at high strain rates
This study presents a constitutive model for steels exhibiting SIMT, based on previous seminal works, and the corresponding methodology to estimate their parameters. The model includes temperature effects in the phase transformation kinetics, and in the softening of each solid phase through the use of a homogenization technique. The model was validated with experimental results of dynamic tensile tests on AISI 304 sheet steel specimens, and their predictions correlate well with the experimental evidence in terms of macroscopic stress–strain curves and martensite volume fraction formed at high strain rates. The work shows the value of considering temperature effects in the modeling of metastable austenitic steels submitted to impact conditions. Regarding most of the works reported in the literature on SIMT, modeling of the martensitic transformation at high strain rates is the distinctive feature of the present paper.The researchers of the University Carlos III of Madrid are indebted to the Comunidad Autónoma de Madrid (Project CCG10-UC3M/DPI-5596)) and to the Ministerio de Ciencia e Innovación de España (Project DPI/2008-06408) for the financial support received which allowed conducting part of this work. The authors express their thanks to Mr. Philippe and Mr. Tobisch from the company Zwick for the facilities provided to perform the tensile tests at high strain rates
On the Taylor-Quinney coefficient in dynamically phase transforming materials. Application to 304 stainless steel
We present a thermodynamic scheme to capture the variability of the Taylor-Quinney coefficient in austenitic steels showing strain induced martensitic transformation at high strain rates. For that task, the constitutive description due to Zaera et al. (2012) has been extended to account for the heat sources involved in the temperature increase of the material. These are the latent heat released due to the exothermic character of the transformation and the heat dissipated due to austenite and martensite straining. Through a differential treatment of these dissipative terms, the Taylor-Quinney coefficient develops a direct connection with the martensitic transformation becoming stress, strain and strain rate dependent. The improved constitutive description sheds light on experimental results available in the literature reporting unusual (> 1) values for the Taylor-Quinney coefficient.The researchers of the University Carlos III of Madrid are indebted to the Comunidad Autónoma de Madrid (Project
CCG10-UC3M/DPI-5596)) and to the Ministerio de Ciencia e Innovación de España (Project DPI/2011-24068) for the financial
support received which allowed conducting part of this work. D. Rittel acknowledges the support of Carlos III University with
a Cátedra de Excelencia funded by Banco Santander during academic year 2011–2012.Publicad
A constitutive model for analyzing martensite formation in austenitic steels deforming at high strain rates
This study presents a constitutive model for steels exhibiting SIMT, based on previous sem inal works, and the corresponding methodology to estimate their parameters. The model includes temperature effects in the phase transformation kinetics, and in the softening of each solid phase through the use of a homogenization technique. The model was validated with experimental results of dynamic tensile tests on AISI 304 sheet steel specimens, and their predictions correlate well with the experimental evidence in terms of macroscopic stress strain curves and martensite volume fraction formed at high strain rates. The work shows the value of considering temperature effects in the modeling of metastable austen itic steels submitted to impact conditions. Regarding most of the works reported in the lit erature on SIMT, modeling of the martensitic transformation at high strain rates is the distinctive feature of the present paper.The researchers of the University Carlos III of Madrid are indebted to the Comunidad Autónoma de Madrid (Project CCG10 UC3M/DPI 5596)) and to the Ministerio de Ciencia e Innovación de España (Project DPI/2008 06408) for the financial support received which allowed conducting part of this work. The authors express their thanks to Mr. Philippe and Mr. Tobisch from the company Zwick for the facilities provided to perform the tensile tests at high strain rates.Publicad
Extreme Northern Acclimatization in Biennial Yellow Sweetclover (Melilotus officinalis) at the Arctic Circle
Biennial sweetclovers (Melilotus spp.) are among
the most winter-hardy of the legumes used as forage
crops (Bula and Smith 1954; Gorz and Smith 1973;
Hodgson and Bula 1956; Klebesadel 1971b, 1980). Common
strains and cultivars of both yellow-flowered (M.
officinalis [L.] Lam.) and white-flowered (M. alba Desr.)
species are grown extensively in the Middle West and
Great Plains areas of the United States (Gorz and Smith
1973), and the prairie provinces of Canada
(Greenshields 1957). However, due to inadequate winter
hardiness in Alaska of strains currently available
(Hodgson and Bula 1956; Irwin 1945; Klebesadel 1971b,
1980), sweetclovers from other areas are not dependable
for use as biennials in southcentral Alaska
Strong modulation of optical properties in black phosphorus through strain-engineered rippling
Controlling the bandgap through local-strain engineering is an exciting
avenue for tailoring optoelectronic materials. Two-dimensional crystals are
particularly suited for this purpose because they can withstand unprecedented
non-homogeneous deformations before rupture: one can literally bend them and
fold them up almost like a piece of paper. Here, we study multi-layer black
phosphorus sheets subjected to periodic stress to modulate their optoelectronic
properties. We find a remarkable shift of the optical absorption band-edge of
up to ~0.7 eV between the regions under tensile and compressive stress, greatly
exceeding the strain tunability reported for transition metal dichalcogenides.
This observation is supported by theoretical models which also predict that
this periodic stress modulation can yield to quantum confinement of carriers at
low temperatures. The possibility of generating large strain-induced variations
in the local density of charge carriers opens the door for a variety of
applications including photovoltaics, quantum optics and two-dimensional
optoelectronic devices.Comment: 16 pages main text + 13 pages S
Breakdown of anomalous channeling with ion energy for accurate strain determination in gan-based heterostructures
The influence of the beam energy on the determination of strain state with ion channeling in GaN-based heterostructures (HSs) is addressed. Experimental results show that anomalous channeling may hinder an accurate analysis due to the steering effects at the HS interface, which are more intense at lower ion energies. The experimental angular scans have been well reproduced by Monte Carlo simulations, correlating the steering effects with the close encounter probability at the interface. Consequently, limitations in the determination of the strain state by ion channeling can be overcome by selecting the adequate beam energy
Modelling of thermo-viscoplastic behaviour of DH-36 and Weldox 460-E structural steels at wide ranges of strain rates and temperatures, comparison of constitutive relations for impact problems
In this paper, the thermo-viscoplastic behaviour of DH-36 and Weldox-460-E steels is analyzed at wide ranges of strain rates and temperatures. These materials are commonly used for naval applications. Thus, they may be subjected to a wide range of exploitation temperatures and at the same time to high strain rates due to accidental impact or explosion. The thermo-viscoplastic behaviour of these materials has been modeled by application of RK (Rusinek-Klepaczko) constitutive relation. The predictions obtained using RK constitutive relation have been compared with JC (Johnson-Cook) and PB (Physical Base) constitutive relations with use of the experimental results reported in the works of Nemat-Nasser and Guo [Nemat-Nasser, S., Guo, W.G., 2003. Thermomechanical response of DH-36 structural steel over a wide range of strain rates and temperatures. Mech. Mat. 35, 1023-1047] and Borvik et al. [Borvik, T., Hopperstad, O.S., Berstad, T., Langseth, M., 2001. A computational model of viscoplasticity and ductile damage for impact and penetration. Eur. J. Solid. Mech. A. 20, 685-712]. For both metals, a satisfactory agreement is reported between the experimental results and the analytical predictions using RK model at wide ranges of strain rates and temperatures (10-3 s-1 to 104 s-1, and 77 K to about 1000 K). Especially for high strain rate level, the predictions of RK model are notably more precise than those predictions obtained using PB and JC models. This proof converts RK model in suitable for modeling impact problems. Finally, numerical simulations of perforation process of DH-36 and Weldox 460-E steel plates impacted by conical non-deformable projectiles have been carried out using RK and JC models. Numerical results using FE simulations have revealed substantial influence of the constitutive relation concerning the ballistic limit, residual velocity and failure time predictions for the same initial and boundary conditions.The researchers of the University Carlos
III of Madrid are indebted to the Comunidad Autónoma de Madrid (Project UC3M/DPI 3395) and to the Ministerio de
Educatión y Ciencia de España (Project DPI/2005 06769)Publicad
- …