22,957 research outputs found
Recommended from our members
Inferring structures, free energy differences, and kinetic rates of biological macromolecular assemblies by integrative modeling
Biological macromolecular assemblies play crucial roles in most cellular processes. The determination of their structures, thermodynamics, and kinetics is essential to understand their function, evolution, modulation, and design. Determining such models, however, remains challenging. One particularly powerful approach to constructing models in general is integrative modeling. Integrative modeling aims to maximize the accuracy, precision, and completeness of models, by simultaneously utilizing all available information, including experimental data, physical principles, statistical analyses, and other prior models. The goal of this thesis is to expand the scope of integrative modeling to the inference of spatial, thermodynamic, and kinetic aspects of macromolecular assemblies. In Chapter I, I introduce the integrative modeling framework for spatiotemporal modeling of biological macromolecular assemblies. In Chapter II, I demonstrate how the synergy between multi-chemistry cross-linking mass spectrometry and integrative modeling can map the structural dynamics of macromolecular assemblies, by application to the human Cop9 signalosome complex. In Chapter III, I present a method for determining structures, free energy differences, and kinetic rates of macromolecular assemblies along their functional cycle, mainly from negative stain electron microscopy (EM). We apply the method to the yeast Hsp90 to estimate the free energy differences and kinetic parameters along its nucleotide hydrolysis cycle, which includes open and closed states of Hsp90. In Chapter IV, I describe a validation of stochastic sampling in integrative modeling. The remaining chapters describe applications of integrative modeling to assemblies of various sizes and scales, using various sources of information, thus illustrating the flexibility of the integrative modeling approach. Specifically, I apply integrative modeling to the human ECM29-Proteasome assembly under oxidative stress (Chapter V), the yeast nuclear pore complex (NPC) cytoplasmic mRNA export platform (Chapter VI), the major membrane ring component of the yeast NPC (Chapter VII), the entire yeast NPC (Chapter VIII), and the reconstruction of 3D structures of MET antibodies (Chapter IX)
Perturbation-based Markovian Transmission Model for Probing Allosteric Dynamics of Large Macromolecular Assembling: A Study of GroEL-GroES
Large macromolecular assemblies are often important for biological processes in cells. Allosteric communications between different parts of these molecular machines play critical roles in cellular signaling. Although studies of the topology and fluctuation dynamics of coarse-grained residue networks can yield important insights, they do not provide characterization of the time-dependent dynamic behavior of these macromolecular assemblies. Here we develop a novel approach called Perturbation-based Markovian Transmission (PMT) model to study globally the dynamic responses of the macromolecular assemblies. By monitoring simultaneous responses of all residues (>8,000) across many (>6) decades of time spanning from the initial perturbation until reaching equilibrium using a Krylov subspace projection method, we show that this approach can yield rich information. With criteria based on quantitative measurements of relaxation half-time, flow amplitude change, and oscillation dynamics, this approach can identify pivot residues that are important for macromolecular movement, messenger residues that are key to signal mediating, and anchor residues important for binding interactions. Based on a detailed analysis of the GroEL-GroES chaperone system, we found that our predictions have an accuracy of 71ā84% judged by independent experimental studies reported in the literature. This approach is general and can be applied to other large macromolecular machineries such as the virus capsid and ribosomal complex
Recommended from our members
Archiving and disseminating integrative structure models.
Limitations in the applicability, accuracy, and precision of individual structure characterization methods can sometimes be overcome via an integrative modeling approach that relies on information from all available sources, including all available experimental data and prior models. The open-source Integrative Modeling Platform (IMP) is one piece of software that implements all computational aspects of integrative modeling. To maximize the impact of integrative structures, the coordinates should be made publicly available, as is already the case for structures based on X-ray crystallography, NMR spectroscopy, and electron microscopy. Moreover, the associated experimental data and modeling protocols should also be archived, such that the original results can easily be reproduced. Finally, it is essential that the integrative structures are validated as part of their publication and deposition. A number of research groups have already developed software to implement integrative modeling and have generated a number of structures, prompting the formation of an Integrative/Hybrid Methods Task Force. Following the recommendations of this task force, the existing PDBx/mmCIF data representation used for atomic PDB structures has been extended to address the requirements for archiving integrative structural models. This IHM-dictionary adds a flexible model representation, including coarse graining, models in multiple states and/or related by time or other order, and multiple input experimental information sources. A prototype archiving system called PDB-Dev ( https://pdb-dev.wwpdb.org ) has also been created to archive integrative structural models, together with a Python library to facilitate handling of integrative models in PDBx/mmCIF format
Supramolecular polymer hydrogels induced by host-guest interactions with di-[cyclobis(paraquat-p-phenylene)] cross-linkers: from molecular complexation to viscoelastic properties
Supramolecular polymer networks have been designed on the basis of a -electron donor/acceptor complex: naphthalene (N)/cyclobis(paraquat-p-phenylene) (CBPQT4+=B). For this purpose, a copolymer of N,N-dimethylacrylamide P(DMA-N1), lightly decorated with 1 mol% of naphthalene pendant groups, has been studied in semi-dilute un-entangled solution in the presence of di-CBPQT4+ (BB) crosslinker type molecules. While calorimetric experiments demonstrate the quantitative binding between N and B groups up to 60 Ā°C, the introduction of BB crosslinkers into the polymer solution gives rise to gel formation above the overlap concentration. From a comprehensive investigation of viscoelastic properties, performed at different concentrations, host/guest stoichiometric ratios and temperatures, the supramolecular hydrogels are shown to follow a Maxwellian behavior with a strong correlation of the plateau modulus and the relaxation time with the effective amount of interchain cross-linkers and their dissociation dynamics, respectively. The calculation of the dissociation rate constant of the supramolecular complex, by extrapolation of the relaxation time of the network back to the beginning of the gel regime, is discussed in the framework of theoretical and experimental works on associating polymers
An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes.
Mass spectrometry (MS) has become a crucial technique for the analysis of protein complexes. Native MS has traditionally examined protein subunit arrangements, while proteomics MS has focused on sequence identification. These two techniques are usually performed separately without taking advantage of the synergies between them. Here we describe the development of an integrated native MS and top-down proteomics method using Fourier-transform ion cyclotron resonance (FTICR) to analyse macromolecular protein complexes in a single experiment. We address previous concerns of employing FTICR MS to measure large macromolecular complexes by demonstrating the detection of complexes up to 1.8ā
MDa, and we demonstrate the efficacy of this technique for direct acquirement of sequence to higher-order structural information with several large complexes. We then summarize the unique functionalities of different activation/dissociation techniques. The platform expands the ability of MS to integrate proteomics and structural biology to provide insights into protein structure, function and regulation
Definitions of terms relating to individual macromolecules, macromolecular assemblies, polymer solutions, and amorphous bulk polymers (IUPAC Recommendations 2014)
This document defines terms relating to the properties of individual macromolecules, macromolecular assemblies, polymer solutions, and amorphous bulk polymers. In the section on polymer solutions and amorphous bulk polymers, general and thermodynamic terms, dilute solutions, phase behaviour, transport properties, scattering methods, and separation methods are considered. The recommendations are a revision and expansion of the IUPAC terminology published in 1989 dealing with individual macromolecules, macromolecular assemblies, and dilute polymer solutions. New terms covering the principal theoretical and experimental developments that have occurred over the intervening years have been introduced. Polyelectrolytes are not included.ā³1143Ysciescopu
A new approach to high resolution, high contrast electron microscopy of macromolecular block copolymer assemblies
Determining the structure of macromolecular samples is vital for understanding and adapting their function. Transmission electron microscopy (TEM) is widely used to achieve this, but, owing to the weak electron scattering cross-section of carbon, TEM images of macromolecular samples are generally low contrast and low resolution. Here we implement a fast and practically simple routine to achieve high-contrast imaging of macromolecular samples using exit wave reconstruction (EWR), revealing a new level of structural detail. This is only possible using ultra-low contrast supports such as the graphene oxide (GO) used here and as such represents a novel application of these substrates. We apply EWR on GO membranes to study self-assembled block copolymer structures, distinguishing not only the general morphology or nanostructure, but also evidence for the substructure (i.e. the polymer chains) which gives insight into their formation mechanisms and functional properties
- ā¦