3,419 research outputs found
Multi-field three-node triangular finite element model for helmholtz problem
In this paper, four three-node triangular finite element models which can readily be incorporated into the standard finite element program framework are devised via a multi-field variational functional for the bounded plane Helmholtz problem. In the models, boundary and domain fields are independently assumed. The former is constructed by nodal interpolation and the latter comprises nonsingular solutions of the Helmholtz equation. The equality of the two fields are enforced along the element boundary. Among the four devised models, the most accurate one is 1/3 to 1/2 less erroneous than the conventional single-field model in most examples. © 2011 IMACS.postprin
A semi-analytical scheme for highly oscillatory integrals over tetrahedra
This is the peer reviewed version of the following article: [Hospital-Bravo, R., Sarrate, J., and DĂez, P. (2017) A semi-analytical scheme for highly oscillatory integrals over tetrahedra. Int. J. Numer. Meth. Engng, 111: 703–723. doi: 10.1002/nme.5474], which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/nme.5474/full. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.This paper details a semi-analytical procedure to efficiently integrate the product of a smooth function and a complex exponential over tetrahedral elements. These highly oscillatory integrals appear at the core of different numerical techniques. Here, the Partition of Unity Method (PUM) enriched with plane waves is used as motivation. The high computational cost or the lack of accuracy in computing these integrals is a bottleneck for their application to engineering problems of industrial interest. In this integration rule, the non-oscillatory function is expanded into a set of Lagrange polynomials. In addition, Lagrange polynomials are expressed as a linear combination of the appropriate set of monomials, whose product with the complex exponentials is analytically integrated, leading to 16 specific cases that are developed in detail. Finally, we present several numerical examples to assess the accuracy and the computational efficiency of the proposed method, compared to standard Gauss-Legendre quadratures.Peer ReviewedPostprint (author's final draft
An efficient multi-core implementation of a novel HSS-structured multifrontal solver using randomized sampling
We present a sparse linear system solver that is based on a multifrontal
variant of Gaussian elimination, and exploits low-rank approximation of the
resulting dense frontal matrices. We use hierarchically semiseparable (HSS)
matrices, which have low-rank off-diagonal blocks, to approximate the frontal
matrices. For HSS matrix construction, a randomized sampling algorithm is used
together with interpolative decompositions. The combination of the randomized
compression with a fast ULV HSS factorization leads to a solver with lower
computational complexity than the standard multifrontal method for many
applications, resulting in speedups up to 7 fold for problems in our test
suite. The implementation targets many-core systems by using task parallelism
with dynamic runtime scheduling. Numerical experiments show performance
improvements over state-of-the-art sparse direct solvers. The implementation
achieves high performance and good scalability on a range of modern shared
memory parallel systems, including the Intel Xeon Phi (MIC). The code is part
of a software package called STRUMPACK -- STRUctured Matrices PACKage, which
also has a distributed memory component for dense rank-structured matrices
Hybrid-trefftz six-node triangular finite element models for helmholtz problem
In this paper, six-node hybrid-Trefftz triangular finite element models which can readily be incorporated into the standard finite element program framework in the form of additional element subroutines are devised via a hybrid variational principle for Helmholtz problem. In these elements, domain and boundary variables are independently assumed. The former is truncated from the Trefftz solution sets and the latter is obtained by the standard polynomial-based nodal interpolation. The equality of the two variables are enforced along the element boundary. Both the plane-wave solutions and Bessel solutions are employed to construct the domain variable. For full rankness of the element matrix, a minimal of six domain modes are required. By using local coordinates and directions, rank sufficient and invariant elements with six plane-wave modes, six Bessel solution modes and seven Bessel solution modes are devised. Numerical studies indicate that the hybrid-Trefftz elements are typically 50% less erroneous than their continuous Galerkin element counterpart.published_or_final_versionSpringer Open Choice, 01 Dec 201
Parallel accelerated cyclic reduction preconditioner for three-dimensional elliptic PDEs with variable coefficients
We present a robust and scalable preconditioner for the solution of
large-scale linear systems that arise from the discretization of elliptic PDEs
amenable to rank compression. The preconditioner is based on hierarchical
low-rank approximations and the cyclic reduction method. The setup and
application phases of the preconditioner achieve log-linear complexity in
memory footprint and number of operations, and numerical experiments exhibit
good weak and strong scalability at large processor counts in a distributed
memory environment. Numerical experiments with linear systems that feature
symmetry and nonsymmetry, definiteness and indefiniteness, constant and
variable coefficients demonstrate the preconditioner applicability and
robustness. Furthermore, it is possible to control the number of iterations via
the accuracy threshold of the hierarchical matrix approximations and their
arithmetic operations, and the tuning of the admissibility condition parameter.
Together, these parameters allow for optimization of the memory requirements
and performance of the preconditioner.Comment: 24 pages, Elsevier Journal of Computational and Applied Mathematics,
Dec 201
Genetic Exponentially Fitted Method for Solving Multi-dimensional Drift-diffusion Equations
A general approach was proposed in this article to develop high-order
exponentially fitted basis functions for finite element approximations of
multi-dimensional drift-diffusion equations for modeling biomolecular
electrodiffusion processes. Such methods are highly desirable for achieving
numerical stability and efficiency. We found that by utilizing the one-one
correspondence between continuous piecewise polynomial space of degree
and the divergence-free vector space of degree , one can construct
high-order 2-D exponentially fitted basis functions that are strictly
interpolative at a selected node set but are discontinuous on edges in general,
spanning nonconforming finite element spaces. First order convergence was
proved for the methods constructed from divergence-free Raviart-Thomas space
at two different node set
- …