654,931 research outputs found

    Magnetic Field Tomography

    Full text link
    Neutral atoms may be trapped via the interaction of their magnetic dipole moment with magnetic field gradients. One of the possible schemes is the cloverleaf trap. It is often desirable to have at hand a fast and precise technique for measuring the magnetic field distribution. We introduce a novel diagnostic tool for instantaneous imaging the equipotential lines of a magnetic field within a region of space (the vacuum recipient) that is not accessible to massive probes. Our technique is based on spatially resolved observation of the fluorescence emitted by a hot beam of sodium atoms crossing a thin slice of resonant laser light within the magnetic field region to be investigated. The inhomogeneous magnetic field spatially modulates the resonance condition between the Zeeman-shifted hyperfine sublevels and the laser light and therefore the amount of scattered photons. We demonstrate this technique by mapping the field of our cloverleaf trap in three dimensions under various conditions.Comment: 8 pages, 8 figure

    Magnetic field mapper

    Get PDF
    Magnetic field mapper locates imperfections in cadmium sulphide solar cells by detecting and displaying the variations of the normal component of the magnetic field resulting from current density variations. It can also inspect for nonuniformities in other electrically conductive materials

    Magnetic field control

    Get PDF
    A torque control for an electromechanical torquing device of a type where a variable clearance occurs between a rotor and field is described. A Hall effect device senses the field present, which would vary as a function of spacing between field and rotor. The output of the Hall effect device controls the power applied to the field so as to provide a well defined field and thus a controlled torque to the rotor which is well defined

    Cosmological magnetic field survival

    Full text link
    It is widely believed that primordial magnetic fields are dramatically diluted by the expansion of the universe. As a result, cosmological magnetic fields with residual strengths of astrophysical relevance are generally sought by going outside standard cosmology, or by extending conventional electromagnetic theory. Nevertheless, the survival of strong B-fields of primordial origin is possible in spatially open Friedmann universes without changing conventional electromagnetism. The reason is the hyperbolic geometry of these spacetimes, which slows down the adiabatic magnetic decay-rate and leads to their superadiabatic amplification on large scales. So far, the effect has been found to operate on Friedmannian backgrounds containing either radiation or a slow-rolling scalar field. We show here that the superadiabatic amplification of large-scale magnetic fields, generated by quantum fluctuations during inflation, is essentially independent of the type of matter that fills the universe and appears to be a generic feature of open Friedmann spacetimes. We estimate the late-time strength of any residual field in a marginally open universe and show that it can easily meet the requirements for the dynamo generation of the magnetic fields observed in galaxies today.Comment: Equations streamlined, references updated. MNRAS in pres

    Spin Chain with Magnetic Field and Spinning String in Magnetic Field Background

    Full text link
    We analyze the fast-moving string in the magnetic Melvin field background and find that the associated effective Lagrangian of string sigma model describes the spin chain model with external magnetic field. The spin vector in the spin chain has been properly deformed and is living on the deformed two-sphere or deformed two-dimensional hyperboloid, depending on the direction around which the string is spinning. We describe in detail the characters of spin deformation and, in particular, see that this is a general property for a string moving in a class of deformed background.Comment: Latex 10 pages, add a figure and a section, change titl

    Ultrahigh Magnetic Field Optical Study of Single-walled Carbon Nanotubes Film

    Full text link
    Excitons in Single-Walled Carbon Nanotubes (SWNTs) have emerged as an ideal candidate for exploring one-dimensional (1-D) exciton physics. Exciton states which dominate optical properties of SWNTs even at room temperature, are not clarify yet. The optical absorption spectra of aligned SWNTs films under ultra high magnetic fields up to 190 T are examined to investigate this issue. Shifting and splitting of the absorption peaks due to Aharonov-Bohm effect was observed clearly above 80 T in the configuration where the magnetic fields were applied in parallel to the alignment of SWNTs. The lowest singlet exciton state has been determined through the analysis of energy splitting of excitons by the application of magnetic fields.

    Possibility of conversion of neutron star to quark star in presence of high magnetic field

    Full text link
    Recent results and data suggests that high magnetic field in neutron stars (NS) strongly affects the characteristic (radius, mass) of the star. They are even separated as a class known as magnetars, for whom the surface magnetic field are greater than 101410^{14} G. In this work we discuss the effect of such high magnetic field on the phase transition of NS to quark star (QS). We study the effect of magnetic field on the transition from NS to QS including the magnetic field effect in equation of state (EoS). The inclusion of the magnetic field increases the range of baryon number density, for which the flow velocities of the matter in the respective phase are finite. The magnetic field helps in initiation of the conversion process. The velocity of the conversion front however decreases due to the presence of magnetic field, as the presence of magnetic field reduces the effective pressure (P). The magnetic field of the star gets decreased by the conversion process, and the resultant QS has lower magnetic field than that of the initial NS.Comment: 8 pages, 9 figures; accepted to be published in MNRA
    corecore