1,986 research outputs found

    Potential for Supernova Neutrino Detection in MiniBooNE

    Full text link
    The MiniBooNE detector at Fermilab is designed to search for νμνe\nu_\mu \to \nu_e oscillation appearance at Eν1GeVE_\nu \sim 1 {\rm GeV} and to make a decisive test of the LSND signal. The main detector (inside a veto shield) is a spherical volume containing 0.680 ktons of mineral oil. This inner volume, viewed by 1280 phototubes, is primarily a \v{C}erenkov medium, as the scintillation yield is low. The entire detector is under a 3 m earth overburden. Though the detector is not optimized for low-energy (tens of MeV) events, and the cosmic-ray muon rate is high (10 kHz), we show that MiniBooNE can function as a useful supernova neutrino detector. Simple trigger-level cuts can greatly reduce the backgrounds due to cosmic-ray muons. For a canonical Galactic supernova at 10 kpc, about 190 supernova νˉe+pe++n\bar{\nu}_e + p \to e^+ + n events would be detected. By adding MiniBooNE to the international network of supernova detectors, the possibility of a supernova being missed would be reduced. Additionally, the paths of the supernova neutrinos through Earth will be different for MiniBooNE and other detectors, thus allowing tests of matter-affected mixing effects on the neutrino signal.Comment: Added references, version to appear in PR

    New Limits on Dark Matter from Super-Kamiokande

    Full text link
    The signals observed at the direct detection experiments DAMA, CoGeNT and CRESST could be explained by light WIMPs with sizeable spin-independent cross sections with nucleons. The capture and subsequent annihilation of such particles in the sun would induce neutrino signals in the GeV range which may be observed at Super-Kamiokande. We determine the rate of upward stopping muons and fully contained events at Super-Kamiokande for various possible WIMP annihilation channels. This allows us to provide strong constraints on the cross section of WIMPs with nucleons. We find that the DAMA and CoGeNT signals are inconsistent with standard thermal WIMPs annihilating dominantly into neutrino or tau pairs. We also provide limits for spin-dependent WIMP nucleus scattering for masses up to 80 GeV. These exclude the DAMA favored region if WIMPs annihilate even subdominantly into neutrinos, taus, bottoms or charms.Comment: 19 pages, 4 figure

    Enhanced signal of astrophysical tau neutrinos propagating through Earth

    Get PDF
    Earth absorbs \nue and \numu of energies above about 100 TeV. As is well-known, although \nutau will also disappear through charged-current interactions, the \nutau flux will be regenerated by prompt tau decays. We show that this process also produces relatively large fluxes of secondary \nube and \nubmu, greatly enhancing the detectability of the initial \nutau. This is particularly important because at these energies \nutau is a significant fraction of the expected astrophysical neutrino flux, and only a tiny portion of the atmospheric neutrino flux.Comment: Four pages, two inline figure

    PPPC 4 DMν\nu: A Poor Particle Physicist Cookbook for Neutrinos from DM annihilations in the Sun

    Get PDF
    We provide ingredients and recipes for computing neutrino signals of TeV-scale Dark Matter annihilations in the Sun. For each annihilation channel and DM mass we present the energy spectra of neutrinos at production, including: state-of-the-art energy losses of primary particles in solar matter, secondary neutrinos, electroweak radiation. We then present the spectra after propagation to the Earth, including (vacuum and matter) flavor oscillations and interactions in solar matter. We also provide a numerical computation of the capture rate of DM particles in the Sun. These results are available in numerical form.Comment: 27 pages, many figures. v2: a typo corrected in eq.(18). All results are available at http://www.marcocirelli.net/PPPC4DMID.htm

    Neutrino signals from electroweak bremsstrahlung in solar WIMP annihilation

    Full text link
    Bremsstrahlung of WW and ZZ gauge bosons, or photons, can be an important dark matter annihilation channel. In many popular models in which the annihilation to a pair of light fermions is helicity suppressed, these bremsstrahlung processes can lift the suppression and thus become the dominant annihilation channels. The resulting dark matter annihilation products contain a large, energetic, neutrino component. We consider solar WIMP annihilation in the case where electroweak bremsstrahlung dominates, and calculate the resulting neutrino spectra. The flux consists of primary neutrinos produced in processes such as χχνˉνZ\chi\chi\rightarrow \bar{\nu}\nu Z and χχνˉW\chi\chi\rightarrow \bar{\nu}\ell W, and secondary neutrinos produced via the decays of gauge bosons and charged leptons. After dealing with the neutrino propagation and flavour evolution in the Sun, we consider the prospects for detection in neutrino experiments on Earth. By comparing our signal with that for annihilation to W+WW^+W^-, we show that the detection prospects for the bremsstrahlung annihilation channel are favourable.Comment: 18 pages, 5 figures. Discussion expanded; matches published versio

    Neutrino-induced Muon Fluxes from Neutralino Annihilations in the Sun and in the Earth

    Get PDF
    The flux of neutrino-induced muons at the surface of the Earth is calculated from injection of neutralino annihilation products in the core of the Sun and the Earth. An improved treatment of neutrino propagation through the Sun is performed and the results are presented in an easy-to-use parameterization. For an explicit supersymmetric model, an observable neutralino annihilation signal is demonstrated.Comment: 4 pages, 2 figures (uuencoded compressed tar-files), uses espcrc2.st

    High Energy Cosmic Neutrinos Astronomy: The ANTARES Project

    Get PDF
    Neutrinos may offer a unique opportunity to explore the far Universe at high energy. The ANTARES collaboration aims at building a large undersea neutrino detector able to observe astrophysical sources (AGNs, X-ray binary systems, ...) and to study particle physics topics (neutrino oscillation, ...). After a description of the research opportunities of such a detector, a status report of the experiment will be made.Comment: Talk given at the 19th Texas Symposium, Paris, December 199
    corecore