447,593 research outputs found
Logic Models....Not Just for Big Foundations Anymore
Logic modeling is popular with large foundations, but has not been embraced by many of the smaller ones. One reason is that foundations with few or no staff fear that producing one is complicated and time consuming. It doesn't have to be. And it can be a crucial tool for small asset foundations looking to make sustained impact.This report offers a case study of how the KDK-Harman Foundation created a logic model laying out its underlying assumptions and theories of change and aligning goals, activities, and intended outcomes and how it incorporated the model into decision-making processes
Mill on logic
Working within the broad lines of general consensus that mark out the core features of John Stuart Mill’s (1806–1873) logic, as set forth in his A System of Logic (1843–1872), this chapter provides an introduction to Mill’s logical theory by reviewing his position on the relationship between induction and deduction, and the role of general premises and principles in reasoning. Locating induction, understood as a kind of analogical reasoning from particulars to particulars, as the basic form of inference that is both free-standing and the sole load-bearing structure in Mill’s logic, the foundations of Mill’s logical system are briefly inspected. Several naturalistic features are identified, including its subject matter, human reasoning, its empiricism, which requires that only particular, experiential claims can function as basic reasons, and its ultimate foundations in ‘spontaneous’ inference. The chapter concludes by comparing Mill’s naturalized logic to Russell’s (1907) regressive method for identifying the premises of mathematics
Process Realizability
We develop a notion of realizability for Classical Linear Logic based on a
concurrent process calculus.Comment: Appeared in Foundations of Secure Computation: Proceedings of the
1999 Marktoberdorf Summer School, F. L. Bauer and R. Steinbruggen, eds. (IOS
Press) 2000, 167-18
Parikh and Wittgenstein
A survey of Parikh’s philosophical appropriations of Wittgensteinian themes, placed into historical context against the backdrop of Turing’s famous paper, “On computable numbers, with an application to the Entscheidungsproblem” (Turing in Proc Lond Math Soc 2(42): 230–265, 1936/1937) and its connections with Wittgenstein and the foundations of mathematics. Characterizing Parikh’s contributions to the interaction between logic and philosophy at its foundations, we argue that his work gives the lie to recent presentations of Wittgenstein’s so-called metaphilosophy (e.g., Horwich in Wittgenstein’s metaphilosophy. Oxford University Press, Oxford, 2012) as a kind of “dead end” quietism. From early work on the idea of a feasibility in arithmetic (Parikh in J Symb Log 36(3):494–508, 1971) and vagueness (Parikh in Logic, language and method. Reidel, Boston, pp 241–261, 1983) to his more recent program in social software (Parikh in Advances in modal logic, vol 2. CSLI Publications, Stanford, pp 381–400, 2001a), Parikh’s work encompasses and touches upon many foundational issues in epistemology, philosophy of logic, philosophy of language, and value theory. But it expresses a unified philosophical point of view. In his most recent work, questions about public and private languages, opportunity spaces, strategic voting, non-monotonic inference and knowledge in literature provide a remarkable series of suggestions about how to present issues of fundamental importance in theoretical computer science as serious philosophical issues
Quantum Reality and Measurement: A Quantum Logical Approach
The recently established universal uncertainty principle revealed that two
nowhere commuting observables can be measured simultaneously in some state,
whereas they have no joint probability distribution in any state. Thus, one
measuring apparatus can simultaneously measure two observables that have no
simultaneous reality. In order to reconcile this discrepancy, an approach based
on quantum logic is proposed to establish the relation between quantum reality
and measurement. We provide a language speaking of values of observables
independent of measurement based on quantum logic and we construct in this
language the state-dependent notions of joint determinateness, value identity,
and simultaneous measurability. This naturally provides a contextual
interpretation, in which we can safely claim such a statement that one
measuring apparatus measures one observable in one context and simultaneously
it measures another nowhere commuting observable in another incompatible
context.Comment: 16 pages, Latex. Presented at the Conference "Quantum Theory:
Reconsideration of Foundations, 5 (QTRF5)," Vaxjo, Sweden, 15 June 2009. To
appear in Foundations of Physics
"Boring formal methods" or "Sherlock Holmes deduction methods"?
This paper provides an overview of common challenges in teaching of logic and
formal methods to Computer Science and IT students. We discuss our experiences
from the course IN3050: Applied Logic in Engineering, introduced as a "logic
for everybody" elective course at at TU Munich, Germany, to engage pupils
studying Computer Science, IT and engineering subjects on Bachelor and Master
levels. Our goal was to overcome the bias that logic and formal methods are not
only very complicated but also very boring to study and to apply. In this
paper, we present the core structure of the course, provide examples of
exercises and evaluate the course based on the students' surveys.Comment: Preprint. Accepted to the Software Technologies: Applications and
Foundations (STAF 2016). Final version published by Springer International
Publishing AG. arXiv admin note: substantial text overlap with
arXiv:1602.0517
- …