1,884,405 research outputs found

    The use of manuka honey to promote wound healing

    Get PDF
    When wounds are not healing, or the healing is slow, this is usually because the wound is inflamed. Inflammation in a wound is also responsible for unsightly scars after a wound has eventually healed. The use of honey as a wound dressing prevents these problems through its potent antibacterial and anti-inflammatory activity. Another action of honey, its rapid debridement of wounds, also aids healing by removing bacteria-harbouring slough which gives rise to inflammation. With the use of Manuka honey, selected to have the right type and level of antibacterial activity, and with an appropriate dressing protocol that keeps honey present on the wound bed at all times, uncomplicated wounds will heal rapidly, painlessly, and without a visible scar. With complicated wounds, including ones failing to heal with any form of best-practice modern treatments, if Manuka honey is used appropriately it can be expected to have complete healing, with a cosmetically good outcome, within six to twelve weeks

    Programming in logic without logic programming

    Get PDF
    In previous work, we proposed a logic-based framework in which computation is the execution of actions in an attempt to make reactive rules of the form if antecedent then consequent true in a canonical model of a logic program determined by an initial state, sequence of events, and the resulting sequence of subsequent states. In this model-theoretic semantics, reactive rules are the driving force, and logic programs play only a supporting role. In the canonical model, states, actions and other events are represented with timestamps. But in the operational semantics, for the sake of efficiency, timestamps are omitted and only the current state is maintained. State transitions are performed reactively by executing actions to make the consequents of rules true whenever the antecedents become true. This operational semantics is sound, but incomplete. It cannot make reactive rules true by preventing their antecedents from becoming true, or by proactively making their consequents true before their antecedents become true. In this paper, we characterize the notion of reactive model, and prove that the operational semantics can generate all and only such models. In order to focus on the main issues, we omit the logic programming component of the framework.Comment: Under consideration in Theory and Practice of Logic Programming (TPLP

    Embedding Defeasible Logic into Logic Programming

    Full text link
    Defeasible reasoning is a simple but efficient approach to nonmonotonic reasoning that has recently attracted considerable interest and that has found various applications. Defeasible logic and its variants are an important family of defeasible reasoning methods. So far no relationship has been established between defeasible logic and mainstream nonmonotonic reasoning approaches. In this paper we establish close links to known semantics of logic programs. In particular, we give a translation of a defeasible theory D into a meta-program P(D). We show that under a condition of decisiveness, the defeasible consequences of D correspond exactly to the sceptical conclusions of P(D) under the stable model semantics. Without decisiveness, the result holds only in one direction (all defeasible consequences of D are included in all stable models of P(D)). If we wish a complete embedding for the general case, we need to use the Kunen semantics of P(D), instead.Comment: To appear in Theory and Practice of Logic Programmin

    Generalization of the Truth-relevant Semantics to the Predicate Calculus

    Full text link
    In 1952 P. F. Strawson proposed a logic of presuppositions. It is an interpretation of Aristotelian logic, i.e. of the logic of the traditional syllogism. In 1981 Richard Diaz published a monograph in which he presented truth-relevant logic. This paper shows that truth-relevant logic is but a propositional version of the logic of presuppositions. A semantics of the logic of presuppositions is developed using truth-relevant logic. The semantics is then further extended to polyadic logic and some consequences discussed

    Implementing Default and Autoepistemic Logics via the Logic of GK

    Full text link
    The logic of knowledge and justified assumptions, also known as logic of grounded knowledge (GK), was proposed by Lin and Shoham as a general logic for nonmonotonic reasoning. To date, it has been used to embed in it default logic (propositional case), autoepistemic logic, Turner's logic of universal causation, and general logic programming under stable model semantics. Besides showing the generality of GK as a logic for nonmonotonic reasoning, these embeddings shed light on the relationships among these other logics. In this paper, for the first time, we show how the logic of GK can be embedded into disjunctive logic programming in a polynomial but non-modular translation with new variables. The result can then be used to compute the extension/expansion semantics of default logic, autoepistemic logic and Turner's logic of universal causation by disjunctive ASP solvers such as claspD(-2), DLV, GNT and cmodels.Comment: Proceedings of the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014

    Boolean Dependence Logic and Partially-Ordered Connectives

    Full text link
    We introduce a new variant of dependence logic called Boolean dependence logic. In Boolean dependence logic dependence atoms are of the type =(x_1,...,x_n,\alpha), where \alpha is a Boolean variable. Intuitively, with Boolean dependence atoms one can express quantification of relations, while standard dependence atoms express quantification over functions. We compare the expressive power of Boolean dependence logic to dependence logic and first-order logic enriched by partially-ordered connectives. We show that the expressive power of Boolean dependence logic and dependence logic coincide. We define natural syntactic fragments of Boolean dependence logic and show that they coincide with the corresponding fragments of first-order logic enriched by partially-ordered connectives with respect to expressive power. We then show that the fragments form a strict hierarchy.Comment: 41 page
    corecore