49,875 research outputs found
HYDRA: Hybrid Deep Magnetic Resonance Fingerprinting
Purpose: Magnetic resonance fingerprinting (MRF) methods typically rely on
dictio-nary matching to map the temporal MRF signals to quantitative tissue
parameters. Such approaches suffer from inherent discretization errors, as well
as high computational complexity as the dictionary size grows. To alleviate
these issues, we propose a HYbrid Deep magnetic ResonAnce fingerprinting
approach, referred to as HYDRA.
Methods: HYDRA involves two stages: a model-based signature restoration phase
and a learning-based parameter restoration phase. Signal restoration is
implemented using low-rank based de-aliasing techniques while parameter
restoration is performed using a deep nonlocal residual convolutional neural
network. The designed network is trained on synthesized MRF data simulated with
the Bloch equations and fast imaging with steady state precession (FISP)
sequences. In test mode, it takes a temporal MRF signal as input and produces
the corresponding tissue parameters.
Results: We validated our approach on both synthetic data and anatomical data
generated from a healthy subject. The results demonstrate that, in contrast to
conventional dictionary-matching based MRF techniques, our approach
significantly improves inference speed by eliminating the time-consuming
dictionary matching operation, and alleviates discretization errors by
outputting continuous-valued parameters. We further avoid the need to store a
large dictionary, thus reducing memory requirements.
Conclusions: Our approach demonstrates advantages in terms of inference
speed, accuracy and storage requirements over competing MRF method
Learning-based Single-step Quantitative Susceptibility Mapping Reconstruction Without Brain Extraction
Quantitative susceptibility mapping (QSM) estimates the underlying tissue
magnetic susceptibility from MRI gradient-echo phase signal and typically
requires several processing steps. These steps involve phase unwrapping, brain
volume extraction, background phase removal and solving an ill-posed inverse
problem. The resulting susceptibility map is known to suffer from inaccuracy
near the edges of the brain tissues, in part due to imperfect brain extraction,
edge erosion of the brain tissue and the lack of phase measurement outside the
brain. This inaccuracy has thus hindered the application of QSM for measuring
the susceptibility of tissues near the brain edges, e.g., quantifying cortical
layers and generating superficial venography. To address these challenges, we
propose a learning-based QSM reconstruction method that directly estimates the
magnetic susceptibility from total phase images without the need for brain
extraction and background phase removal, referred to as autoQSM. The neural
network has a modified U-net structure and is trained using QSM maps computed
by a two-step QSM method. 209 healthy subjects with ages ranging from 11 to 82
years were employed for patch-wise network training. The network was validated
on data dissimilar to the training data, e.g. in vivo mouse brain data and
brains with lesions, which suggests that the network has generalized and
learned the underlying mathematical relationship between magnetic field
perturbation and magnetic susceptibility. AutoQSM was able to recover magnetic
susceptibility of anatomical structures near the edges of the brain including
the veins covering the cortical surface, spinal cord and nerve tracts near the
mouse brain boundaries. The advantages of high-quality maps, no need for brain
volume extraction and high reconstruction speed demonstrate its potential for
future applications.Comment: 26 page
Two-photon imaging and analysis of neural network dynamics
The glow of a starry night sky, the smell of a freshly brewed cup of coffee
or the sound of ocean waves breaking on the beach are representations of the
physical world that have been created by the dynamic interactions of thousands
of neurons in our brains. How the brain mediates perceptions, creates thoughts,
stores memories and initiates actions remains one of the most profound puzzles
in biology, if not all of science. A key to a mechanistic understanding of how
the nervous system works is the ability to analyze the dynamics of neuronal
networks in the living organism in the context of sensory stimulation and
behaviour. Dynamic brain properties have been fairly well characterized on the
microscopic level of individual neurons and on the macroscopic level of whole
brain areas largely with the help of various electrophysiological techniques.
However, our understanding of the mesoscopic level comprising local populations
of hundreds to thousands of neurons (so called 'microcircuits') remains
comparably poor. In large parts, this has been due to the technical
difficulties involved in recording from large networks of neurons with
single-cell spatial resolution and near- millisecond temporal resolution in the
brain of living animals. In recent years, two-photon microscopy has emerged as
a technique which meets many of these requirements and thus has become the
method of choice for the interrogation of local neural circuits. Here, we
review the state-of-research in the field of two-photon imaging of neuronal
populations, covering the topics of microscope technology, suitable fluorescent
indicator dyes, staining techniques, and in particular analysis techniques for
extracting relevant information from the fluorescence data. We expect that
functional analysis of neural networks using two-photon imaging will help to
decipher fundamental operational principles of neural microcircuits.Comment: 36 pages, 4 figures, accepted for publication in Reports on Progress
in Physic
- …