566 research outputs found

    Predictable Quantum Efficient Detector

    Get PDF
    This thesis gives an overview of the Predictable Quantum Efficient Detector designed to measure optical radiation with theoretical relative uncertainty of 1 ppm (parts per million). The device is based on two custom made large area induced junction silicon photodiodes arranged in a wedged trap structure. High internal quantum efficiency (IQE) of the photodiodes is achieved by means of low doping concentration and usage of the reverse bias voltage. The IQE is predicted to be improved furthermore using low operating temperature close to 77 K. The losses due to reflected light are minimized by multiple reflections between the photodiodes. Low losses allow the PQED to work as an ideal quantum detector whose spectral responsivity is determined purely by the fundamental constants h, c, e and vacuum wavelength lambda. The remaining minor charge carrier losses are predictable using physical modelling whereas fractional reflectance losses can be measured. These properties classify the PQED as an absolute detector which does not require calibration against any other radiometric primary standard. The prototype PQED was compared against present primary standard - the cryogenic radiometer – at the wavelengths of 476 nm, 532 nm and 760 nm at room temperature and at liquid nitrogen temperature. Comparisons showed that the predicted external quantum deficiency of the PQED agreed with the measured external quantum deficiency within the expanded uncertainty of 60 ppm to 180 ppm determined by the cryogenic radiometer at both temperatures. These results indicate that the responsivity of the PQED is highly predictable and its uncertainty is comparable with the uncertainty of the conventional cryogenic radiometer. Such data provide evidence that the cryogenic radiometer operated close to 10 K temperatures may be replaced by a PQED operated even at room temperature. The advantage of the PQED is its simple operation which is comparable with any other silicon based photodetector whereas its optical radiation detection uncertainty is comparable with expensive and sophisticated cryogenic radiometer

    Predictable quantum efficient detector based on n-type silicon photodiodes

    Get PDF
    Timo Dönsberg et al. -- 16 pags., 16 figs., 4 tabs. -- Open Access funded by Creative Commons Atribution Licence 3.0The predictable quantum efficient detector (PQED) consists of two custom-made induced junction photodiodes that are mounted in a wedged trap configuration for the reduction of reflectance losses. Until now, all manufactured PQED photodiodes have been based on a structure where a SiO2 layer is thermally grown on top of p-type silicon substrate. In this paper, we present the design, manufacturing, modelling and characterization of a new type of PQED, where the photodiodes have an Al2O3 layer on top of n-type silicon substrate. Atomic layer deposition is used to deposit the layer to the desired thickness. Two sets of photodiodes with varying oxide thicknesses and substrate doping concentrations were fabricated. In order to predict recombination losses of charge carriers, a 3D model of the photodiode was built into Cogenda Genius semiconductor simulation software. It is important to note that a novel experimental method was developed to obtain values for the 3D model parameters. This makes the prediction of the PQED responsivity a completely autonomous process. Detectors were characterized for temperature dependence of dark current, spatial uniformity of responsivity, reflectance, linearity and absolute responsivity at the wavelengths of 488¿nm and 532¿nm. For both sets of photodiodes, the modelled and measured responsivities were generally in agreement within the measurement and modelling uncertainties of around 100 parts per million (ppm). There is, however, an indication that the modelled internal quantum deficiency may be underestimated by a similar amount. Moreover, the responsivities of the detectors were spatially uniform within 30¿ppm peak-to-peak variation. The results obtained in this research indicate that the n-type induced junction photodiode is a very promising alternative to the existing p-type detectors, and thus give additional credibility to the concept of modelled quantum detector serving as a primary standard. Furthermore, the manufacturing of PQEDs is no longer dependent on the availability of a certain type of very lightly doped p-type silicon wafers.The research leading to these results has received funding from the European Metrology Research Programme (EMRP) project SIB57 'New Primary Standards and Traceability for Radiometry'. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. Financial support from the Academy of Finland through the Finnish Centre of Excellence in Atomic Layer Deposition is also acknowledged.Peer Reviewe

    Predictable quantum efficient detector based on n-type silicon photodiodes

    Get PDF
    The predictable quantum efficient detector (PQED) consists of two custom-made induced junction photodiodes that are mounted in a wedged trap configuration for the reduction of reflectance losses. Until now, all manufactured PQED photodiodes have been based on a structure where a SiO2 layer is thermally grown on top of p-type silicon substrate. In this paper, we present the design, manufacturing, modelling and characterization of a new type of PQED, where the photodiodes have an Al2O3 layer on top of n-type silicon substrate. Atomic layer deposition is used to deposit the layer to the desired thickness. Two sets of photodiodes with varying oxide thicknesses and substrate doping concentrations were fabricated. In order to predict recombination losses of charge carriers, a 3D model of the photodiode was built into Cogenda Genius semiconductor simulation software. It is important to note that a novel experimental method was developed to obtain values for the 3D model parameters. This makes the prediction of the PQED responsivity a completely autonomous process. Detectors were characterized for temperature dependence of dark current, spatial uniformity of responsivity, reflectance, linearity and absolute responsivity at the wavelengths of 488 nm and 532 nm. For both sets of photodiodes, the modelled and measured responsivities were generally in agreement within the measurement and modelling uncertainties of around 100 parts per million (ppm). There is, however, an indication that the modelled internal quantum deficiency may be underestimated by a similar amount. Moreover, the responsivities of the detectors were spatially uniform within 30 ppm peak-to-peak variation. The results obtained in this research indicate that the n-type induced junction photodiode is a very promising alternative to the existing p-type detectors, and thus give additional credibility to the concept of modelled quantum detector serving as a primary standard. Furthermore, the manufacturing of PQEDs is no longer dependent on the availability of a certain type of very lightly doped p-type silicon wafers.Peer reviewe

    The NASA Spitzer Space Telescope

    Get PDF
    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991–2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/

    The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles

    Full text link
    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method

    Optical and Crystal Structure Characterizations of Nanowires for Infrared Applications

    Get PDF
    abstract: Semiconductor nanowires (NWs) are one dimensional materials and have size quantization effect when the diameter is sufficiently small. They can serve as optical wave guides along the length direction and contain optically active gain at the same time. Due to these unique properties, NWs are now very promising and extensively studied for nanoscale optoelectronic applications. A systematic and comprehensive optical and microstructural study of several important infrared semiconductor NWs is presented in this thesis, which includes InAs, PbS, InGaAs, erbium chloride silicate and erbium silicate. Micro-photoluminescence (PL) and transmission electron microscope (TEM) were utilized in conjunction to characterize the optical and microstructure of these wires. The focus of this thesis is on optical study of semiconductor NWs in the mid-infrared wavelengths. First, differently structured InAs NWs grown using various methods were characterized and compared. Three main PL peaks which are below, near and above InAs bandgap, respectively, were observed. The octadecylthiol self-assembled monolayer was employed to passivate the surface of InAs NWs to eliminate or reduce the effects of the surface states. The band-edge emission from wurtzite-structured NWs was completely recovered after passivatoin. The passivated NWs showed very good stability in air and under heat. In the second part, mid-infrared optical study was conducted on PbS wires of subwavelength diameter and lasing was demonstrated under optical pumping. The PbS wires were grown on Si substrate using chemical vapor deposition and have a rock-salt cubic structure. Single-mode lasing at the wavelength of ~3000-4000 nm was obtained from single as-grown PbS wire up to the temperature of 115 K. PL characterization was also utilized to demonstrate the highest crystallinity of the vertical arrays of InP and InGaAs/InP composition-graded heterostructure NWs made by a top-down fabrication method. TEM-related measurements were performed to study the crystal structures and elemental compositions of the Er-compound core-shell NWs. The core-shell NWs consist of an orthorhombic-structured erbium chloride silicate shell and a cubic-structured silicon core. These NWs provide unique Si-compatible materials with emission at 1530 nm for optical communications and solid state lasers.Dissertation/ThesisPh.D. Electrical Engineering 201
    • …
    corecore