1,354,162 research outputs found
M-estimation of linear models with dependent errors
We study asymptotic properties of -estimates of regression parameters in
linear models in which errors are dependent. Weak and strong Bahadur
representations of the -estimates are derived and a central limit theorem is
established. The results are applied to linear models with errors being
short-range dependent linear processes, heavy-tailed linear processes and some
widely used nonlinear time series.Comment: Published at http://dx.doi.org/10.1214/009053606000001406 in the
Annals of Statistics (http://www.imstat.org/aos/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Universal statistics of non-linear energy transfer in turbulent models
A class of shell models for turbulent energy transfer at varying the
inter-shell separation, , is investigated. Intermittent corrections in
the continuous limit of infinitely close shells () have
been measured. Although the model becomes, in this limit, non-intermittent, we
found universal aspects of the velocity statistics which can be interpreted in
the framework of log-poisson distributions, as proposed by She and Waymire
(1995, Phys. Rev. Lett. 74, 262). We suggest that non-universal aspects of
intermittency can be adsorbed in the parameters describing statistics and
properties of the most singular structure. On the other hand, universal aspects
can be found by looking at corrections to the monofractal scaling of the most
singular structure. Connections with similar results reported in other shell
models investigations and in real turbulent flows are discussed.Comment: 4 pages, 2 figures available upon request to [email protected]
Limiting Laws of Linear Eigenvalue Statistics for Unitary Invariant Matrix Models
We study the variance and the Laplace transform of the probability law of
linear eigenvalue statistics of unitary invariant Matrix Models of
n-dimentional Hermitian matrices as n tends to infinity. Assuming that the test
function of statistics is smooth enough and using the asymptotic formulas by
Deift et al for orthogonal polynomials with varying weights, we show first that
if the support of the Density of States of the model consists of two or more
intervals, then in the global regime the variance of statistics is a
quasiperiodic function of n generically in the potential, determining the
model. We show next that the exponent of the Laplace transform of the
probability law is not in general 1/2variance, as it should be if the Central
Limit Theorem would be valid, and we find the asymptotic form of the Laplace
transform of the probability law in certain cases
A conjugate prior for discrete hierarchical log-linear models
In Bayesian analysis of multi-way contingency tables, the selection of a
prior distribution for either the log-linear parameters or the cell
probabilities parameters is a major challenge. In this paper, we define a
flexible family of conjugate priors for the wide class of discrete hierarchical
log-linear models, which includes the class of graphical models. These priors
are defined as the Diaconis--Ylvisaker conjugate priors on the log-linear
parameters subject to "baseline constraints" under multinomial sampling. We
also derive the induced prior on the cell probabilities and show that the
induced prior is a generalization of the hyper Dirichlet prior. We show that
this prior has several desirable properties and illustrate its usefulness by
identifying the most probable decomposable, graphical and hierarchical
log-linear models for a six-way contingency table.Comment: Published in at http://dx.doi.org/10.1214/08-AOS669 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
- …