408 research outputs found

    Limits to Sympathetic Evaporative Cooling of a Two-Component Fermi Gas

    Full text link
    We find a limit cycle in a quasi-equilibrium model of evaporative cooling of a two-component fermion gas. The existence of such a limit cycle represents an obstruction to reaching the quantum ground state evaporatively. We show that evaporatively the \beta\mu ~ 1. We speculate that one may be able to cool an atomic fermi gas further by photoassociating dimers near the bottom of the fermi sea.Comment: Submitted to Phys. Rev

    Cooling and thermometry of atomic Fermi gases

    Full text link
    We review the status of cooling techniques aimed at achieving the deepest quantum degeneracy for atomic Fermi gases. We first discuss some physical motivations, providing a quantitative assessment of the need for deep quantum degeneracy in relevant physics cases, such as the search for unconventional superfluid states. Attention is then focused on the most widespread technique to reach deep quantum degeneracy for Fermi systems, sympathetic cooling of Bose-Fermi mixtures, organizing the discussion according to the specific species involved. Various proposals to circumvent some of the limitations on achieving the deepest Fermi degeneracy, and their experimental realizations, are then reviewed. Finally, we discuss the extension of these techniques to optical lattices and the implementation of precision thermometry crucial to the understanding of the phase diagram of classical and quantum phase transitions in Fermi gases.Comment: 33 pages, 15 figures, contribution to the 100th anniversary of the birth of Vitaly L. Ginzbur

    Ultracold atomic Fermi-Bose mixtures in bichromatic optical dipole traps: a novel route to study fermion superfluidity

    Full text link
    The study of low density, ultracold atomic Fermi gases is a promising avenue to understand fermion superfluidity from first principles. One technique currently used to bring Fermi gases in the degenerate regime is sympathetic cooling through a reservoir made of an ultracold Bose gas. We discuss a proposal for trapping and cooling of two-species Fermi-Bose mixtures into optical dipole traps made from combinations of laser beams having two different wavelengths. In these bichromatic traps it is possible, by a proper choice of the relative laser powers, to selectively trap the two species in such a way that fermions experience a stronger confinement than bosons. As a consequence, a deep Fermi degeneracy can be reached having at the same time a softer degenerate regime for the Bose gas. This leads to an increase in the sympathetic cooling efficiency and allows for higher precision thermometry of the Fermi-Bose mixture

    Cooling dynamics of ultracold two-species Fermi-Bose mixtures

    Full text link
    We compare strategies for evaporative and sympathetic cooling of two-species Fermi-Bose mixtures in single-color and two-color optical dipole traps. We show that in the latter case a large heat capacity of the bosonic species can be maintained during the entire cooling process. This could allow to efficiently achieve a deep Fermi degeneracy regime having at the same time a significant thermal fraction for the Bose gas, crucial for a precise thermometry of the mixture. Two possible signatures of a superfluid phase transition for the Fermi species are discussed.Comment: 4 pages, 3 figure

    A quasi-pure Bose-Einstein condensate immersed in a Fermi sea

    Full text link
    We report the observation of co-existing Bose-Einstein condensate and Fermi gas in a magnetic trap. With a very small fraction of thermal atoms, the 7Li condensate is quasi-pure and in thermal contact with a 6Li Fermi gas. The lowest common temperature is 0.28 muK = 0.2(1) T_C = 0.2(1) T_F where T_C is the BEC critical temperature and T_F the Fermi temperature. Behaving as an ideal gas in the radial trap dimension, the condensate is one-dimensional.Comment: 4 pages, 5 figure

    Two-species mixture of quantum degenerate Bose and Fermi gases

    Full text link
    We have produced a macroscopic quantum system in which a Li-6 Fermi sea coexists with a large and stable Na-23 Bose-Einstein condensate. This was accomplished using inter-species sympathetic cooling of fermionic Li-6 in a thermal bath of bosonic Na-23

    Sympathetic cooling of trapped fermions by bosons in the presence of particle losses

    Full text link
    We study the sympathetic cooling of a trapped Fermi gas interacting with an ideal Bose gas below the critical temperature of the Bose-Einstein condensation. We derive the quantum master equation, which describes the dynamics of the fermionic component, and postulating the thermal distribution for both gases we calculate analytically the rate at which fermions are cooled by the bosonic atoms. The particle losses constitute an important source of heating of the degenerate Fermi gas. We evaluate the rate of loss-induced heating and derive analytical results for the final temperature of fermions, which is limited in the presence of particle losses.Comment: 7 pages, 2 figures, EPL style; final versio
    • …
    corecore